
Searching for subgroup-specific associations while controlling the

false discovery rate

Matteo Sesia∗and Tianshu Sun∗

September 15, 2023

Abstract

This paper introduces an innovative method for conducting conditional independence testing in high-
dimensional data, facilitating the automated discovery of significant associations within distinct sub-
groups of a population, all while controlling the false discovery rate. This is achieved by expanding upon
the model-X knockoff filter to provide more informative inferences. Our enhanced inferences can help
explain sample heterogeneity and uncover interactions, making better use of the capabilities offered by
modern machine learning models. Specifically, our method is able to leverage any model for the identifi-
cation of data-driven hypotheses pertaining to interesting population subgroups. Then, it rigorously test
these hypotheses without succumbing to selection bias. Importantly, our approach is efficient and does
not require sample splitting. We demonstrate the effectiveness of our method through simulations and
numerical experiments, using data derived from a randomized experiment featuring multiple treatment
variables.

1 Introduction

1.1 Background and motivation

Contemporary data sets are growing in both size and diversity, often incorporating observations from various
environments or diverse populations characterized by a multitude of distinct patterns and behaviours. This
complexity offers many opportunities to statisticians. For instance, it can help alleviate issues of collinearity
[1], enhance the robustness of predictive models to distribution shifts [2], and aid in the identification of
causal associations by filtering out spurious correlations [3, 4]. However, such heterogeneous data also pose
new challenges, highlighting some limitations of existing analysis methods that rely on rigid population-wide
hypothesis testing.

This paper focuses on the problem of identifying significant conditional associations between an outcome
of interest and many possible explanatory variables. For this purpose, we adopt and expand the model-X
framework proposed by Candès et al. [5], which does not require assuming a parametric regression model for
the outcome. Within this context, we contend that population-wide hypothesis testing is not fully satisfactory
when dealing with heterogeneous samples. Such testing may yield technically valid discoveries, but it leads
to findings that are not necessarily the most practically valuable, particularly when the objective is to guide
data-driven decisions involving diverse individuals who exhibit varying behaviours. This concern serves as
the driving force behind our development of a novel methodology, one that can provide more informative
model-X inferences tailored to interesting subgroups of individuals.

Our work is partly motivated by the analytical challenges faced by e-commerce and social media enter-
prises, which have access to extensive data [6] and are frequently able to monitor customer responses to
randomized interventions [7]. These experiments often entail multiple treatment variables, and their joint
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distribution can be intricate, and possibly contingent on many covariates [7]. For instance, consider a sce-
nario within social networks where the “things in common” are displayed to encourage friendship formation
[8]. In this case, users who hover on another user’s profile are randomly presented with some shared features
(e.g., having attended the same school, expressing similar interests, etc.), with the objective of discerning
which interventions facilitate the creation of new connections. Alternatively, researchers in an e-commerce
company may wish to explore the efficacy of different targeted marketing strategies, leveraging insights from
the previous purchases and browsing histories of current customers to make personalized product recommen-
dations.

In both of the aforementioned scenarios, there may exist numerous significant associations between the
outcome of interest and various explanatory variables. Given a sufficiently large sample size, any sensible
test should be able to identify these associations. Nevertheless, converting these findings into actionable
business insights can prove to be a difficult task since these associations may hold little relevance for the
majority of individuals in the population.

Consider, for instance, a subscription box service offering an array of products to its subscribers on a
monthly basis. The company’s objective is to understand how various promotional strategies impact customer
retention and product preferences. Their data collection encompasses a range of promotional tactics, such
as discounts, exclusive items, and early access. Upon analysis, an association may emerge between providing
exclusive outdoor adventure gear (e.g., backpacking food) as part of the subscription box and an increase in
customer retention. Nonetheless, this association probably holds relevance only for a minority of users who
belong to a subgroup characterized by specific demographic attributes (e.g., younger adults), geographical
features (e.g., proximity to mountains) or who have purchase histories of related equipment (e.g., hiking
gear). Therefore, the analysts would likely find it helpful to have at their disposal methods that can not
only detect significant associations, but also automatically pinpoint the population subgroups for which the
discoveries are relevant.

Although the potential impacts of this statistical problem are far-reaching, and wealth of related literature
has already been written, we contend that there remains an unaddressed void in the current methodology that
necessitates the development of a novel approach. On one hand, there are many useful data mining algorithms
and machine learning models that can discover subgroups of individuals exhibiting coherent behaviours [9,
10], detect interactions [11, 12], or estimate heterogeneous effects in regression and causal inference [13, 14].
However, such methods are usually not designed to offer precise statistical guarantees in finite samples. On
the other hand, there is the model-X framework of Candès et al. [5], which makes it possible to rigorously
test conditional independence hypotheses under finite-sample type-I error control, while taking advantage of
any model to powerfully discover significant associations. However, existing model-X methods are currently
limited in the analysis of heterogeneous data because they can only test rigid hypotheses defined over the
entire population. Such discoveries may be useful to screen out completely irrelevant predictors but are not
directly informative about the particular effects of any variables across diverse subgroups of individuals, and
they cannot be used to test for interactions.

1.2 Preview of our contribution

This paper presents an extension of the model-X knockoff filter [5] that enhances the informativeness of infer-
ences derived from heterogeneous data and in the presence of interactions. Our novel method accomplishes
two key objectives: (1) it harnesses the power of any machine learning model to automatically identify
interesting conditional independence hypotheses specific to well-defined population subgroups, and (2) it
rigorously tests these data-driven hypotheses while controlling the false discovery rate [15] in finite samples.
Notably, our method efficiently utilizes the same data for both tasks, avoiding selection bias [16–18] without
wasteful sample splitting. We call this method the subgroup-selective knockoff filter.

Figure 1 gives a preview of our method’s performance. These numerical experiments are conducted using
simulated data that consist of multiple explanatory (or “treatment”) variables and an outcome generated
from a parametric model, which we refer to as the true “causal” model. This underlying model is intentionally
structured so that the outcome is influenced by a distinct subset of variables for different subgroups of
individuals, as defined by specific observable covariates. To be more precise, the data generation model is
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a linear model that incorporates interaction terms between the explanatory variables and the covariates.
Consequently, each variable has a unique effect on each individual, with this effect often equating to zero
and generally contingent upon certain covariates. The analyst’s objective is to discover, with the highest
possible precision, which variables exert a non-zero effect within particular subgroups.
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Figure 1: Performance of the subgroup-selective knockoff filter (SSKF) and benchmark methods on synthetic
data. The informativeness of the discoveries is quantified by the homogeneity of the corresponding subgroups
(higher is better) and the heterogeneity of the underlying true effects in the data-generating model (lower is
better). The nominal false discovery rate (FDR) level is 0.1.

As the ground-truth model is known, it is possible to verify which discovered associations are not spurious.
Further, it is also feasible to gauge the informativeness of any findings. This can be achieved by comparing
the sub-populations identified by the rejected hypotheses and the subgroups of individuals characterized by
non-zero treatment effects within the data-generating model. To be more specific, we introduce two distinct
metrics for assessing informativeness: one metric quantifies the homogeneity of the true effects within the
reported subgroups, while the other metric quantifies their heterogeneity in a complementary manner. We
refer to Section 4.1 for further information about the setup of these numerical experiments.

The first alternative (benchmark) approach considered in Figure 1 is the vanilla model-X knockoff filter
[5]. This method can be powerful in discovering population-wide conditional associations and it reliably
controls the false discovery rate. However, it is unable to pinpoint the subgroups in which the significant
variables indeed possess non-zero effects. The limitations of this approach are evident in Figure 1, where the
informativeness metrics remain relatively unchanged as the sample size increases.

In contrast, the subgroup-selective knockoff filter progressively uncovers more informative discoveries
as the data set grows in size, ultimately enabling precise identification of subgroups with non-zero effects.
Additionally, Figure 1 illustrates the strength of our method by comparing it to an intuitive “data splitting”
benchmark. This benchmark involves applying the two distinct modules of the subgroup-selective knockoff
filter (i.e., learning and testing) using separate subsets of the data obtained through random sample splitting.
While this simpler approach also provides valid and informative inferences, it is notably less powerful than
our method.

Finally, Figure 1 evaluates the performance of the subgroup-selective knockoff filter against a naive
benchmark that differs from our method in that it does not carefully protect against possible selection bias.
Unsurprisingly, the naive benchmark results in an excess of spurious discoveries.

1.3 Related work

Our work builds upon the model-X version [5] of the knockoff filter [19]. Prior research studied the problem
of constructing (approximately) valid knockoff variables for different types of data [20–24]; therefore, in this
paper we will assume that suitable knockoffs are available for the application of interest. Others have studied
the robustness of the knockoff filter to approximations in construction of the knockoffs [25, 26] and its power
[27–30], providing additional support for this framework.

This is the first paper in the model-X literature to seek subgroup-specific inferences for heterogeneous
data. Our work is most closely related to Li et al. [31], which proposed an extension of the knockoff filter to
analyze data collected from different environments, and argued that robust conditional associations in that
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context can be seen as relatively good proxies for causal inferences. While we take some inspiration from Li
et al. [31], we study a different problem. In fact, [31] considered each individual as belonging to a distinct
and known population, and their methods cannot test hypotheses corresponding to adaptively discovered
subgroups.

The subgroup-selective knockoff filter is flexible and can learn which subgroups are likely to be affected
by each variable using any model. This connects our work to the rich literature on subgroup analysis or the
estimation of heterogeneous effects in regression and causal inference [13, 32–39]; see also Caron, Baio, and
Manolopoulou [14] for a recent review. The learning module of our method can take advantage of any such
models, which may be either parametric or non-parametric, before the subsequent testing module translates
their output into precise statistical inferences.

For simplicity, this paper focuses on learning using generalized linear models with interaction terms, as
opposed to more complex approaches which may for example involve random forests [18], Bayesian additive
regression trees [40], or neural networks [41]. Interaction terms are relatively simple to explain in the context
of (generalized) linear models, and they are an important source of sample heterogeneity because they can
result in some variables having much larger effects in subgroups with certain covariates. There are numerous
works relating interactions to sample heterogeneity in regression or causal inference [13, 35, 37, 38], and
several techniques have been developed to discover interactions using high-dimensional data [11, 12, 42–45].
We will demonstrate the use of the subgroup-selective knockoff filter in combination with some of these
techniques. However, on their own, the latter would rely on different assumptions and provide different
guarantees compared to our method.

1.4 Outline of this paper

Section 2 introduces useful notation and recalls the relevant technical details of the model-X knockoff filter
from Candès et al. [5]. Section 3 states our problem and presents our method. Section 4 demonstrates the use
of our method empirically. Section 5 concludes with some ideas for future work. The Appendices contains
additional methodological details, numerical results, and mathematical proofs. The Appendices also extends
our novel method to test partial conjunctions [46, 47] of our subgroup-specific hypotheses, complementing
the types of inferences considered in this paper.

2 Technical preliminaries

2.1 Basic notation and setup

We consider a data set comprising n individual observations of triplets (Xi, Y i, Zi). For each individual
i ∈ [n] = {1, . . . , n}, Y i ∈ R is the outcome of interest (which may be either numerical or categorical),
Xi = (Xi

1, . . . , X
i
p) ∈ Rp describes p explanatory variables, and Zi = (Zi

1, . . . , Z
i
m) ∈ Rm represents m ad-

ditional covariates. Let us denote as X ∈ Rn×p, Y ∈ Rn×1, and Z ∈ Rn×m the data matrices collecting
the observations for all individuals. Without loss of generality, the data distribution can be factored as
PX,Y,Z(X,Y,Z) = PZ(Z) · PX|Z(X | Z) · PY |X,Z(Y | X,Z). In the following, PX|Z will be assumed to be
known in order to generate knockoffs, while PZ and PY |X,Z may remain completely arbitrary and unknown.

The assumption that PX|Z is known may not be justified in every application, but it is often a reasonable
approximation and is well-suited for the analysis of data from randomized experiments [48] or genome-wide
association studies [20]. Further, it is feasible to verify the appropriateness of this assumption in practice
[23].

Intuitively, the goal is to shed some light onto how Y depends on X given Z; this aim will be stated
more precisely later in terms of testing suitable conditional independence hypotheses. For simplicity, we will
assume that different individuals are independent of one another.
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2.2 Relevant background on conditional testing with knockoffs

The model-X problem studied by Candès et al. [5] can be thought of as testing, for all j ∈ [p], whether Xj

is associated with Y given Z and all variables excluding Xj (i.e., X−j); that is, whether the following null
hypothesis holds true:

H0,j : Y |= Xj | X−j , Z. (1)

We refer to Appendix A1 for further details regarding the interpretation of (1) and its connections to
parametric inference for generalized linear models and causal inference.

The model-X knockoff filter [5] is designed to test H0,j in (1) for all j ∈ [p] while controlling the false
discovery rate—the expected proportion of falsely rejected hypotheses. This is an especially useful error rate
for analyses in which many discoveries are expected.

The key ingredient for the knockoff filter are the knockoffs, which we denote as X̃. These are synthetic
variables constructed by the statistician as a function ofX and Z without looking at Y , so that X̃ |= Y | X,Z.
Further, the knockoffs are designed to be exchangeable with X in the joint distribution of (X, X̃) conditional
on Z. That is, if [X, X̃] ∈ Rn×2p is the matrix obtained by concatenating X with the corresponding X̃ ∈ Rn×p

and, for any j ∈ [p], the matrix [X, X̃]swap(j) is obtained by swapping the j-th columns of X and X̃, then[
X, X̃

]
swap(j)

| Z d
=
[
X, X̃

]
| Z, ∀j ∈ [p], (2)

where the symbol
d
= denotes equality in distribution. Thus, the only meaningful difference between Xj and

X̃j may be the lack of conditional association of the latter with Y .

Constructing knockoffs that satisfy (2) requires knowledge of PX|Z , as anticipated in Section 2.1, and
it can be computationally involved. However, the problem is well-studied; see Section 1.3. Therefore, this
paper assumes that suitable knockoffs are available for the data at hand.

The purpose of the knockoffs is to serve as negative control variables within a predictive model for Y given
X, X̃ and Z. This model is utilized compute importance measures Tj and T̃j for each Xj and X̃j . Any model

can be employed for this purpose, as long as swapping Xj with X̃j only results in Tj being swapped with T̃j .
A typical choice is to fit a (generalized) lasso model [49] and define the importance measures as the absolute
values of the scaled regression coefficients for X and X̃, after tuning the regularization via cross-validation.
Then, Tj and T̃j are combined pairwise for each j into anti-symmetric statistics Wj ; i.e., Wj = Tj − T̃j . This
ensures that the signs of the Wj are mutually independent coin flips for all j corresponding to a true H0,j ,
while larger and positive values provide evidence against the null. Letting ε ∈ {−1,+1}p be an independent
random vector such that εj = +1 if H0,j is false and P [εj = +1] = 1/2 otherwise, then it can be proved that
W satisfies the flip-sign property:

W | Z d
= W � ε | Z, (3)

where � indicates element-wise multiplication. Intuitively, the sign of Wj gives rise to a conservative binary
p-value pj for H0,j . That is, pj = 1/2 if Wj > 0 and pj = 1 otherwise, as long as H0,j is true. Finally, a
rejection rule for (1) can be obtained by applying a sequential testing procedure to these p-values, in the
order defined by the absolute values of W . As each of these p-values contains a single bit of information, an
appropriate sequential testing procedure is the knockoff filter (or selective SeqStep+ test) of [19], which can
compute an adaptive threshold for Wj controlling the false discovery rate below any desired threshold.

3 Methodology

This section is organized as follows. Section 3.1 defines our subgroup-specific conditional hypotheses, extend-
ing the population-wide hypotheses defined in (1). Section 3.2 gives general guidelines for learning adaptive
subgroups that can lead to informative hypotheses without introducing selection bias in our subsequent
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tests. Section 3.3 outlines a concrete approach for learning data-driven subgroups using parametric regres-
sion models with interaction terms. Section 3.4 explains the core of our method, which can test adaptively
discovered subgroup-specific conditional hypotheses while controlling the false discovery rate. Section 3.5
provides a detailed example of how to implement our method using powerful test statistics.

3.1 Subgroup-specific conditional hypotheses

Standard conditional testing is not fully satisfactory when analyzing heterogeneous data. In fact, rejecting
H0,j in (1) informs us that Xj may have some conditional association with Y in the population, but it sheds
no light on the possible heterogeneity of this relation.

Consider for example a simple mixture population with p = 2 and m = 1, in which Z1 = 1 for half
of the individuals and Z1 = 0 for the others. Suppose X1 and X2 are independent standard normal and
Y ∼ N (Z1X2β2, 1), for some coefficient β2 ∈ R. Then, (1) is true if and only if β2 = 0. Thus, testing H0,j

for j ∈ {1, 2} may be helpful to distinguish X2 from X1, but it does not inform us about the interaction
with Z1. This motivates the more flexible hypothesis testing framework presented below, which will allow us
to automatically discover whether a significant association holds only within a specific population subgroup.
Continuing with the previous example, our method will be able to discover that X2 is important within the
population subgroup with Z1 = 1, and it will report no evidence of such association among individuals with
Z1 = 0. Crucially, there will be no need to know in advance that X2 interacts with Z1.

For any variable index j ∈ [p] and constant G ∈ N, consider a fixed function ψj : Rm 7→ [G] that
partitions the covariate space Rm into G disjoint regions, each identifying a distinct population subgroup.
For example, in the case of the toy model described above, the most informative partition function would
intuitively be ψ1 = 1 and ψ2 = 1 + 1 [Z1 = 1], where 1 [·] is the indicator function. Note that the number
of possible subgroups can generally vary implicitly across different variables, and G simply refers to the
largest partition size across all j ∈ [p]. In fact, the function ψ1 in the previous example defines a single
trivial subgroup encompassing the whole population, which is a reasonable choice in this case since X1 is
unimportant for all individuals.

To extend the standard population-wide conditional testing framework (1), we propose to study subgroup-
specific conditional hypotheses of the form

H(g)
0,j : Y (g) |= X

(g)
j | X(g)

−j , Z
(g), (4)

for each j ∈ [p] and g ∈ [G], where (X(g), Y (g), Z(g)) denotes a random sample from the distribution PX,Y,Z

restricted to {z ∈ Rm : ψj(z) = g}, which we call P
(g)
X,Y,Z . Note that the dependence of the group g on the

variable index j is not shown explicitly to shorten the notation. Considering (4) for all j ∈ [p] and g ∈ [G]
gives a multiple testing problem with mG hypotheses, if the ψj are fixed. In the special case of G = 1, (4)
reduces to (1). In general, however, a rejection of (4) is more informative than one of (1), because (4) is
implied by (1) but the converse is not true. In particular, rejecting (4) can help us to pinpoint the effect of
Xj to subgroup g.

An appropriate choice of ψj is therefore essential to ensure we test interesting hypotheses. In fact, (4)
can be more informative than (1) only if the subgroups are relatively homogeneous in their associations
with Y . Thus, unless prior information about PY |X,Z is available, ψj should be data-driven. As mentioned
in Section 1, there exist many subgroup discovery algorithms, but one must be careful that allowing the
hypotheses to be random may create the risk of selection bias in the subsequent tests. In particular, if the
same data utilized to select the subgroups were re-used naively to test the hypotheses in (4), the type-I
errors might be inflated [18], consistently with Figure 1. Sample splitting could of course circumvent this
issue, but it is unnecessarily wasteful.

3.2 Knockoff-invariant subgroups

We now begin to present a novel method that can powerfully test subgroup-specific conditional hypotheses (4)
adaptively learnt from the data, while controlling the false discovery rate. The key idea is that one can select
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informative subgroups and then test the corresponding hypotheses while avoiding an uncontrollable inflation
of the type-I errors, as long as the learning component of the analysis satisfies a suitable invariance property.
This section defines the necessary invariance property and explains how to achieve it in practice.

Let X̃ ∈ Rn×p be a matrix of knockoffs for X, generated with existing techniques. For convenience, we
refer to the knockoff-augmented data as D = (X, X̃,Y,Z). For any j ∈ [p], let ψ̂j : Rm 7→ N be a random
function whose parameters may depend on D as well as on an independent random matrix V generated by
the analyst, which is specified precisely below; i.e., ψ̂j(z; [X, X̃],Y,Z,V) ∈ N. In the following, we will focus
on a special class of invariant partition functions that are allowed to depend on the data in D but cannot
make use of any knowledge about which variables are real and which are knockoffs.

Definition 1. Let V ∈ {0, 1}n×p be i.i.d. Bernoulli random variables generated by the analyst. Denote
as [X, X̃]swap(V) ∈ Rn×2p the concatenation of X and X̃, with the i-th observation of Xj swapped with its

knockoff if and only if Vij = 1. Then, we say that a vector-valued partition function ψ̂ : Rm 7→ [G]p is
knockoff-invariant if it can be written as

ψ̂j(z; [X, X̃],Y,Z,V) = ψ̂0
j (z; [X, X̃]swap(V),Y,Z),

for all j ∈ [p], z ∈ Rm, and for some fixed ψ̂0 : Rm → [G]p whose parametrization may depend on the data

with swapped knockoffs. Above ψ̂j and ψ̂0
j are the j-th components of ψ̂ and ψ̂0.

We pause for a moment to explain Definition 1 in generality. The intuition is that the partition function
ψ̂ can only be learnt by looking at a modified data set in which the identities of the real variables are masked
by random swapping with their corresponding knockoffs. Although this (deliberately) introduces some noise,
such constraint does not prevent the analyst from learning how to partition the covariate space into useful
subgroups because the masked data in [X, X̃]swap(V) still carries valuable information. In fact, each column
of this matrix contains approximately n/2 real observations, and any machine learning algorithm ψ̂0 may
be utilized to extract useful knowledge from those data. Further, Definition 1 is highly versatile because
it allows one to employ any function ψ̂0, which may involve sophisticated statistical or machine learning
algorithms, to discover meaningful subgroups.

3.3 Subgroup learning using interaction-based models

An intuitive approach to discovering informative subgroups while satisfying Definition 1 involves implement-
ing the function ψ̂0 using parametric regression models with interaction terms. Suppose that we suspect
some of the variables denoted as X may interact with certain covariates Z, akin to the earlier illustration in
Section 3.1. For simplicity we assume here that the covariates take binary values, although one could also
similarly handle more general categorical covariates, or even continuous-valued covariates, through standard
discretization techniques.

In this scenario, the analyst first generates a matrix V of i.i.d. Bernoulli random variables, independent
of the data. Then, the analyst proceeds by fitting a sparse generalized linear model (i.e., the lasso) to predict
Y given [[X, X̃]swap(V),Z], after augmenting the data matrix with all possible pairwise interactions between
Z and [X, X̃]swap(V). Several algorithms exist for fitting such models [11, 43, 45], making this approach
practical and effective.

After tuning the lasso regularization via cross-validation, let β̂j and β̂j+p indicate the estimated main
effects for the (randomly swapped) variables Xj and X̃j , for any j ∈ [p]. Let also γ̂l,j and γ̂l,j+p indicate

the corresponding interaction coefficients involving Zl and the (randomly swapped) variables Xj and X̃j ,
respectively, for all l ∈ [m] and j ∈ [p]. Given an upper bound Gmax on the number of interactions per
variable (e.g., Gmax = 2), for all j ∈ [p] let Îj ⊂ [m] indicate the subset of Gmax covariates with the strongest
(nonzero) interactions involving Xj or X̃j . Above, we understand that any ties are broken at random and
|Îj | < Gmax if the number of covariates with nonzero interaction coefficients is too small. In other words,
we compute

Îj :=
{
l ∈ [m] : |γ̂l,j |+ |γ̂l,j+p| > 0,

∑
l′ 6=l

1 [|γ̂l,j |+ |γ̂l,j+p| > |γ̂l′,j |+ |γ̂l′,j+p|] > m−Gmax

}
.
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This model thus links Xj to at most Gmax covariates. The corresponding functions ψ̂j take values in

{1, . . . , 2|Îj |}, which indexes all possible configurations of the covariates in Îj .
Table 1 helps visualize this approach by highlighting a thought experiment involving 3 explanatory

variables and 3 binary covariates. In this toy example, we imagine that the lasso selects Z1, Z2 as potentially
interacting with X1, and Z3 for X2. No interactions with X3 are detected. Thus, the population is partitioned
into 4 subgroups for X1, 2 subgroups for X2, and 1 trivial subgroup for X3, yielding a total of 7 data-driven
hypotheses.

Table 1: Subgroups selected by fitting a lasso model with interactions, and corresponding interpretations
of the possible discoveries obtained with our method, in an imaginary toy example with 3 variables and 3
binary covariates. The term “influences” is utilized loosely here to indicate a (possibly non-causal) significant
conditional association.

Variable Covariates
Partition Interpretation of the

findings (upon rejection)Label Definition

X1 {Z1, Z2}

1 Z1 = 0, Z2 = 0 X1 influences Y if Z1 = 0 and Z2 = 0
2 Z1 = 0, Z2 = 1 X1 influences Y if Z1 = 0 and Z2 = 1
3 Z1 = 1, Z2 = 0 X1 influences Y if Z1 = 1 and Z2 = 0
4 Z1 = 1, Z2 = 1 X1 influences Y if Z1 = 1 and Z2 = 1

X2 {Z3}
1 Z3 = 0 X2 influences Y if Z3 = 0
2 Z3 = 1 X2 influences Y if Z3 = 1

X3 ∅ 1 All individuals X3 influences Y

Note that the parameter Gmax generally controls an important trade-off between the power of our method
and the interpretability of the findings. A larger value of Gmax tends to lead to more specific hypotheses
corresponding to smaller subgroups, but it also makes it more difficult to reject those hypotheses, as it will
become clear soon. In fact, partitioning roughly reduces the effective number of samples available during
the testing phase by a factor of up to 2Gmax , in the case of binary covariates. Concretely, all demonstrations
presented in this paper will utilize Gmax ∈ {1, 2}, but the optimal value of Gmax may generally depend on
the data.

3.4 The subgroup-selective knockoff filter

For any knockoff-invariant partition function ψ̂ and any variable index j ∈ [p], let Ĝj([X, X̃],Y,Z) =

maxz∈Rm ψ̂j(z) ∈ N be the number of disjoint subgroups induced by ψ̂j . Further, let Ĝ =
∑p

j=1 Ĝj . The
dependence of ψ̂(x), Ĝj , and Ĝ on the data will not be shown explicitly hereafter unless needed to avoid
ambiguity. Let [T, T̃] ∈ R2Ĝ denote a vector of importance measures for all variables and knockoffs in each
region of the covariate space determined by ψ̂. We will explain later how to compute these importance
measures. For now, note that T (resp. T̃) is the concatenation of p sub-vectors T g

j (resp. T̃ g
j ) for all j ∈ [p]

and g ∈ [Ĝj ], whose elements quantify the importance of Xj (resp. X̃j) in predicting Y within subgroup g.

Without loss of generality, the importance measures [T, T̃] can be written as the output of a (possibly
randomized) function τ applied to a knockoff-augmented data set [X, X̃],Y,Z; i.e.,

[T, T̃] = τ
(
[X, X̃],Y,Z

)
=
[
t
(
[X, X̃],Y,Z

)
, t̃
(
[X, X̃],Y,Z

)]
. (5)

Above, t (resp. t̃) are defined in terms of τ , as its first (resp. last) Ĝ elements. In analogy with the familiar
case of the model-X knockoff filter, however, achieving false discovery rate control requires imposing some
constraints on the function τ .

For any S ⊆ [Ĝ], whose elements uniquely identify pairs (j, g) for j ∈ [p] and g ∈ [Ĝj ], let [X, X̃]swap(S)
be the matrix obtained from [X, X̃] after swapping the sub-column X

(g)
j , which contains all observations of

Xj in subgroup g, with the corresponding knockoffs, for all (j, g) ∈ S. Note the change of notation compared
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to (2), where swapping was simultaneous for an entire column. Then, we ask that swapping a real variable
with its knockoff within any subgroup should have the only effect of swapping the corresponding importance
measures in that subgroup:

τ
(
Y, [X, X̃]swap(S),Z

)
=
[
t
(
Y, [X, X̃],Z

)
, t̃
(
Y, [X, X̃],Z

)]
swap(S). (6)

In truth, it would be sufficient for this invariance to hold in distribution if the function τ contained additional
independent randomization (e.g., cross-validation to tune some hyper-parameters). However, we can safely
ignore this detail here to avoid complicating the notation.

For our method to be powerful, the function τ should be such that a larger value in position (j, g) of T
indicates evidence that Zj is associated with Y in subgroup g. By contrast, a larger value in position (j, g)
of T̃ should point to an association of Z̃j with Y , which we know must be spurious. An example of a valid
τ based on the (generalized) lasso is described in Section 3.5. That approach is inspired by Li et al. [31] and
it is both intuitive and relatively inexpensive, as all of its components can be computed in parallel, but it is
not the only possible one.

In general, given any importance measures [T, T̃] obtained as described above, we assemble test statistics
W ∈ RĜ for all selected hypotheses as usual, by computing W g

j = T g
j − T̃

g
j for each pair (j, g). Finally, we

vectorize W and apply the selective SeqStep+ procedure of Barber and Candès [19] (i.e., the final component
of the standard knockoff filter) in order to compute an adaptive significance threshold that determines
which hypotheses should be rejected. Figure A2 in Appendix A2 provides a schematic visualization of this
procedure.

The following theorem establishes that our method controls the false discovery rate. It is worth em-
phasizing that this result is far from trivial and does not stem directly from Candès et al. [5] or Li et al.
[31]. While our proof strategy is inspired by those earlier works, our scenario is inherently more complex.
In fact, our hypotheses are not predetermined but instead automatically selected using the adaptive par-
tition function ψ̂, which depends on the same data used to compute the test statistics. This is a delicate
situation that can generally introduce selection bias [16], as previewed earlier in Figure 1. Nevertheless, our
method is meticulously designed to circumvent such selection bias through the incorporation of independent
randomization within the matrix V, which is used by the analyst to partially mask the training data for ψ̂.

Theorem 1. Consider a knockoff-augmented data set [X, X̃],Y,Z, and let V ∈ {0, 1}n×p be i.i.d. Bernoulli

random variables generated by the analyst, independent of the data. Let ψ̂ be a knockoff-invariant partition
function with total size Ĝ =

∑p
j=1 Ĝj, trained looking only at [X, X̃]swap(V),Y,Z. Let also W ∈ RĜ indicate

test statistics, for the hypotheses defined by ψ̂, computed as described above using a function τ that satis-
fies (6). Suppose U ∈ {±1}Ĝ is a random vector with independent entries such that: Ug

j = ±1 with probability
1/2 if H(g)

0,j in (4) is true and Ug
j = +1 otherwise, for all j ∈ [p] and g ∈ [Ĝj ]. Then, W | ψ̂ d= W �U | ψ̂.

The proof of Theorem 1 is in Appendix A5. An immediate corollary is that the standard knockoff filter
applied to statistics W computed as described above will control the false discovery rate for (4) conditional
on ψ̂; e.g., see Section 2.2 and Candès et al. [5].

3.5 Computing powerful test statistics for the subgroup-selective knockoff filter

We describe here an implementation of our method based on generalized linear models. As the property
in (6) requires swapping Xj and X̃j in subgroup g to have the only effect of swapping the corresponding T g

j

and T̃ g
j , an intuitive approach inspired by [31] is the following. First, a sparse generalized linear model (e.g.,

the lasso) is trained to predict Y given [[X, X̃]swap(V),Z], tuning the regularization via cross-validation. The
absolute values of the regression coefficients serve as “prior” importance measures, T prior

j and T̃ prior
j , for all

variables and knockoffs indexed by j ∈ [p]. These are combined pairwise into a weight πj for each j; for
example, as πj = ζ(T prior

j + T̃ prior
j ), where ζ is a positive and decreasing function such as ζ(t) = 1/(0.05 + t).

Larger values of πj suggest the j-th variable is more likely to have a significant effect among some individuals.
Similar weights can also be defined for the covariates. Then, separately for each (j, g), a new model is fitted
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using only the data from the g-th subgroup to predict Y(g) given [[X(g), X̃(g)]swap(V),Z
(g)], after restoring

the true variable and knockoff identities in the j-th and (j + p)-th columns. See Figure A3 for a schematic
visualization of this algorithm.

This model utilizes feature-specific regularization that depends on two hyper-parameters, λ(j,g) > 0 and
ξ(j,g) ∈ [0, 1], both tuned by cross-validation, and on π. Specifically, the penalty for the l-th variable is
λ
(j,g)
l = λ(j,g)(1− ξ(j,g)) + ξ(j,g)πl, for all l ∈ [p]. If ξ(j,g) = 0, this reduces to a standard lasso looking

only at subgroup g. But, in general, larger values of ξ(j,g) can make our approach more powerful, as we
gather strength from the data in all subgroups. In fact, null variables will tend to receive smaller values
of π and will thus be less likely to be incorrectly selected by the final model, thereby reducing the noise in
the test statistics. Of course, the weights π may not always be informative, hence why ξ(j,g) is tuned by
cross-validation. For that purpose, an expensive two-dimensional grid search can be avoided by tuning first
λ(j,g) > 0 and then ξ(j,g).

Finally, the importance measures for the j-th variable and knockoff in subgroup g are defined as the
absolute values of the regression coefficients for Xj and X̃j , respectively. It is easy to prove this procedure
satisfies (6). In fact, conditional on Y, [X, X̃]swap(V),Z, swapping all observations of Xj in subgroup g with
the corresponding X̃j for any pair (j, g) simply results in swapping T

(g)
j with T̃

(g)
j , as π is unperturbed

because it only depends on [X, X̃]swap(V).

While it is convenient to think about the lasso, the main idea behind our approach is applicable with
any model. The key to achieving (6) is that the importance measures indexed by (j, g) are computed by
a model that sees the other variables and the observations in other subgroups only through the lenses of
the data with randomly swapped knockoffs. The weights π must be estimated based on [[X, X̃]swap(V),Z]
to make the test statistics mutually independent, which is required for false discovery rate control; see the
proof of Theorem 1. Further, revealing the identities of Xj and X̃j within subgroup g is essential to achieve
non-trivial power—otherwise, it would be impossible to tell important variables apart from knockoffs. A
generalization of the above solution would involve estimating different π weights in different subgroups, as
sketched by Figure A3 in Appendix A2. That approach still satisfies (6) if the models utilized to compute
the priors only look at the randomly swapped data in [X, X̃]swap(V).

4 Empirical demonstrations

4.1 Demonstrations with synthetic data

We generate synthetic data with 20 binary variables and 80 covariates. The first 20 covariates are indepen-
dently sampled from a Bernoulli(0.5) distribution. The remaining 60 covariates follow a Gaussian autore-
gressive model of order one with correlation parameter 0.5. The outcome is generated from a linear model
with heterogeneous effects and homoscedastic standard Gaussian noise. The linear coefficients in this model
are zero for half of the variables, for all of the binary covariates, and for half of the 60 continuous covariates.
That is, the expected outcome for the i-th individual is E

[
Y i | Xi, Zi

]
=
∑p

j=1X
i
jβ

i
j +

∑m
j=21 Z

i
jγj , with

βi
j = β̄jZ

i
lj,1
Zi
lj,2

, for p = 20 and m = 80. Above, the β coefficients are individual-specific, while the γ are
constant. The parameters β̄j and γj are initialized with absolute value equal to 4 and independent random
signs, for each j ∈ [p]. Then, separately for each variable j and individual i, the individualized coefficient βi

j

is set equal to the product of β̄j and the two binary covariates Zlj,1 and Zlj,2 , for some lj,1, lj,2 ∈ [20]. Thus,
each variable Xj has an effect on Y only within the subgroups with Zlj,1 = 1 and Zlj,2 = 1, which contains
approximately 1/4 of all individuals if lj,1 6= lj,2. The indices lj,1, lj,2 are sampled with replacement from
{1, . . . , 20}, independently for each j. Our goal is to discover which variables are non-null within which sub-
groups, as powerfully (seeking more numerous findings) and precisely (seeking more informative subgroups)
as possible.

The subgroup-selective knockoff filter is compared to the three benchmarks outlined in Section 1.2. The
first benchmark is the vanilla knockoff filter of [5], which controls the false discovery rate but can only
test population-wide hypotheses. The second benchmark is the data-splitting version of our method, which
utilizes half of the samples to learn the partition and the other half to test the conditional hypotheses. This
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tests the same hypotheses and enjoys the same statistical guarantees as the subgroup-selective knockoff filter
but is less powerful. The third benchmark is a greedy version of our method that naively utilizes all data
twice, first to select the partitions and then to test the conditional hypotheses, without randomly masking
the identity of the knockoffs; this does not control the false discovery rate due to selection bias.

All methods are compared in terms of their average proportion of false discoveries, their power, and the
informativeness of their findings. The latter is quantified by two complementary metrics: the average homo-
geneity of the rejected hypotheses, defined as the proportion of individuals in the reported subgroup for which
the variable of interest has a non-zero coefficient within the data-generating model, and the corresponding
heterogeneity of individual effects, defined as the standard deviation of the true model coefficients.

Figure 1, previewed in Section 3.4, reports the performances of all methods over 100 independent exper-
iments. As discussed in Section 1.2, these results confirm the validity of our approach and demonstrate its
advantages relative to the naive, data-splitting, and vanilla benchmarks. In summary, our method leads to
discoveries that are more informative than those of the vanilla knockoff filter, more numerous than those of
the sample-splitting benchmark, and more reliable than those of the naive greedy benchmark.

Appendix A4.1 presents additional numerical results, demonstrating the use of the subgroup-selective
knockoff filter in a “transfer learning” setting inspired by [50]. The goal there is complementary: we wish to
detect variables with a robust association across different subgroups. This can be achieved with an extension
of our method described in Appendix A3, which tests partial conjunctions of the hypotheses in (4).

4.2 Demonstrations with data from a randomized experiment

We conduct numerical experiments based on a data set from a 2-week long randomized experiment involving
80,000 blood donors in China [51], which was designed to investigate the effectiveness of different donation
incentives. In this experiment, 80,000 individuals were randomly divided into 7 groups: a control group of size
14,000 and 6 treated groups of size 11,000 each. The treated groups received a text message with a reminder
to donate, while the control group received nothing. Treated groups 2–5 received further encouragement to
donate: the promise of an individual monetary reward (equivalent to $5.00–$8.30, depending on the amount
of blood donated) for group 2; a suggestion to bring a friend for group 3, both the individual monetary
reward and the friend suggestion for group 4; a suggestion to bring a friend and the promise of a group
reward (equivalent to the individual reward) for group 5; a suggestion to bring a friend, the promise of a
group reward (as for the previous group), and the promise of a small extra gift for group 6. See Table A1
in Appendix A4.2 for a summary of this experimental design. In the end, 797 individuals made a donation.
These data also contain covariates including age, sex, weight, blood type, marital status, education level,
occupation, residency status (local or non-local), and time since the last blood donation. Missing values (less
than 4%) are imputed with the corresponding sample median (or mode, if categorical).

To simplify the task of generating knockoffs, we approximate the joint distribution of the binary treat-
ments X1, . . . , X5 by imagining that different individuals were assigned to one of the six possible groups
listed in Table A1 independently of one another, with probability proportional to the observed group size.
This model is not perfect because the treatment group sizes were in truth fixed a priori, but the simplifi-
cation is useful as it leads to a manageable joint treatment distribution for which exact knockoffs can be
generated by the Metropolized algorithm of [24]. Goodness-of-fit diagnostics for the knockoffs thus obtained
are reported in Tables A2–A3. In principle, it would also be possible to generate knockoffs without the above
independence assumption using an algorithm similar to that of Sesia et al. [52], but that would be more
technically involved and seems likely unnecessary in this case.

Given that the positive outcomes from this randomized experiment were very rare (approximately 1%),
we expect that any conditional testing method may not be able to make many discoveries with these data.
Therefore, we find it more interesting to conduct a semi-synthetic analysis in which the true donation events
are replaced by simulated outcomes from an imaginary causal model conditional on the treatments and
covariates. This setup remains quite realistic, as it involves real variables, but it reduces the outcome
imbalance and increases the effective sample size. Consequently, the analysis will be more informative
regarding the effectiveness of the our methodology applied to large data sets. Further, as the ground truth
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is known exactly in such a controlled setting, we can have access to useful diagnostics, including the type-I
errors.

For each of the 80,000 individuals, an imaginary donation outcome is simulated from a logistic model
based on the m real covariates Z ∈ Rm and the treatment variables X ∈ R5; i.e.,

logit (P [Y = 1 | X,Z]) = −c+

m∑
j=1

Zjbj + a

5∑
j=1

Xj · gj(Z),

where c ∈ R is an intercept, b1, . . . , bm ∈ R are linear coefficients, and each gj is a binary-valued non-
linear function of Z; see Appendix A4.3 for more details. The first treatment (text reminder) is effective
for individuals who did not donate recently and for those who are non-residents. The individual reward is
effective for students, and twice as much for those who are male. The friends request is effective for female
or unmarried individuals. The group reward is effective for males or students. The small gift is effective
for individuals with fewer than 16 years of education. The goal is to discover which treatments are effective
within which subgroups, as powerfully and precisely as possible. The subgroup-selective knockoff filter is
applied as in the previous section, defining the subgroup-specific hypotheses based on the top two candidate
covariates selected by a (logistic) lasso model fitted on the data with randomly swapped knockoffs.
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Figure 2: Performance of the subgroup-selective knockoff filter and benchmarks in simulations based on data
from a randomized blood donation experiment. Other details are as in Figure 1.

Figure 2 summarizes the results of 100 experiments with independent knockoffs and outcomes, varying
the sample size. Each time, a random subset of individuals is analyzed. The performance of the subgroup-
selective knockoff filter is quantified in terms of false discovery rate and power, as well as in terms of the
homogeneity of the selected hypotheses, as in Section 4.1. The same benchmarks as in Section 4.1 are also
considered here. The subgroup-selective knockoff filter controls the false discovery rate and is more powerful
than data splitting. As expected, the naive approach does not control the false discovery rate, while the
vanilla knockoff filter can only discover less informative population-wide associations. The list of discoveries
obtained in the first experiment with sample size 80,000 is provided in Table A4. Among the 11 findings,
that of the friends request among unmarried females has the largest test statistic; indeed, we know this
treatment has a causal effect for all those individuals. Although no type-I errors are made in this case, not
all findings are equally informative. For example, the reminder can be effective among both male and female
residents, but the subgroup-selective knockoff filter does not tell us that it is only causal for the 60% of them
who are married. In fact, this interaction is not discovered because the initial model fitted on the data with
randomly swapped knockoffs failed to select the corresponding covariate, likely due to the limited sample
size.

5 Discussion

This paper has extended the model-X framework of [5] to enable more informative inferences in the presence
of sample heterogeneity and interactions. Flexibility is the main strength of the proposed method, which
can borrow strength from any statistical or machine learning model while providing rigorous guarantees in
finite samples.
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A promising opportunity for future research is to apply the subgroup-selective knockoff filter to large-scale
data from genome-wide association studies [53], such as the UK Biobank [54] or the Millions Veteran Project
[55]. The populations sampled by those studies are heterogeneous [1], and our method may be helpful to
discover possible gene-environment interactions [56]. Further, the abundance of variables and observations
in those studies will translate into further advantages for our methodology, which generally tends to perform
better when applied to larger-scale data sets. Computing powerful test statistics based on extremely big data
sets involves some computational challenges, but the model-X framework has already been demonstrated to
be quite scalable [52, 57, 58].

Further, it would be interesting to explore whether our inferences could be (at least partly) derandomized
using techniques inspired by Ren and Barber [59] and Ren, Wei, and Candès [60].

A software implementation of our methods is available online at https://github.com/msesia/i-modelx,
along with the code needed to reproduce our numerical results.
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[3] J. Peters, P. Bühlmann, and N. Meinshausen. “Causal inference by using invariant prediction: identi-
fication and confidence intervals”. In: J. R. Stat. Soc. B (2016), pp. 947–1012.
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A1 Background on population-wide conditional testing

A1.1 The interpretation of conditional independence hypotheses

The model-X problem studied by Candès et al. [5] can be thought of as testing, for all j ∈ [p], whether Xj

is associated with Y given Z and all variables excluding Xj (i.e., X−j); that is, whether the null hypothesis
defined in (1) holds true: H0,j : Y |= Xj | X−j , Z. For example, if one assumed a generalized linear model
for Y | X,Z (which we do not do here), then the hypothesis in (1) would reduce, under relatively mild
assumptions on PX|Z , to stating that the linear coefficient for Xj is zero [5].

More generally, without any parametric model for the distribution of the outcome, a rejection of (1) can
be interpreted as a discovery that Xj has some effect on Y conditional on the other observed variables, for at
least some of the individuals in the population. (Note that we are not assuming the individuals are identically
distributed.) These discoveries can be generally useful to screen variables in high-dimensional data analyses
[5], to help prioritize follow-up studies [58], and in some cases even to make approximate causal inferences
[31]. In fact, under some additional assumptions such as the absence of unmeasured confounders, a rejection
of (1) can sometimes be rigorously interpreted as stating that Xj causes Y [61]. See Appendix A1.2 and
Figure A1 for details on the connections to causal inference.

A1.2 The connection to causal inference

In addition to the basic setup of Section 2.1, imagine the variables X are randomized treatments that may
depend on the observed covariates Z but are independent of anything else. Further, suppose the data
distribution takes the form of a structural equation model [62, 63] in which Z and X may cause Y , but
not the other way around, as visualized by the directed acyclic graph in Figure A1. It is easy to see this
setup implicitly rules out confounding in a test of conditional independence between X and Z, because the
treatments are conditionally independent of any other unmeasured covariate C. Therefore, to test whether
Xj has a causal effect on Y , it suffices to test whether the conditional independence hypothesis in (1).
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Proposition A1 (From [61]). Let C be any unmeasured covariate. If X |= C | Z, a valid test of the
conditional independence null hypothesis H0,j in (1) is also a valid test of the stronger null hypothesis

H∗0,j : Y |= Xj | Z,X−j , C. (A7)

Proof. The proof is analogous to that of Proposition 1 in [61]. Suppose H∗0,j : Y |= Xj | Z,X−j , C is true.
Then, it follows from C |= Xj | Z,X−j that (Y,C) |= Xj | Z,X−j . Therefore, H0,j must also be true.

Y

Xj X−jZ

C

PX|Z?

Figure A1: Graphical representation of a non-parametric causal model linking the treatment (X), the
outcome (Y ), the measured covariates (Z), and possibly also other unmeasured covariate (C). Our goal
is to test whether a particular treatment Xj has any causal effect on the outcome. The joint distribution of
X | Z,C is assumed to be known and may depend only on Z, so that X |= C | Z.

A2 Method schematics
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A3 The robust subgroup-selective knockoff filter

The subgroup-selective knockoff filter was developed to test subgroup-specific hypotheses (4) of the type

H(g)
0,j : Y (g) |= X

(g)
j | X(g)

−j , Z
(g),

for all variables j and subgroups g, conditional on a random partition ψ̂ based on the data with randomly
swapped knockoffs. Here, we present a further methodological extension that makes it possible to test the
following partial conjunction [46, 47] hypotheses:

Hpc,r
0,j :

∣∣∣{g ∈ [G] : H(g)
0,j is true

}∣∣∣ > G− r, (A8)

for any fixed r ∈ {1, . . . , G}. This is inspired by Li et al. [31]. Intuitively, the partial conjunction hypothesis

states that the number of subgroups for variable j in which H(g)
0,j (4) is false is strictly smaller than r.

Therefore, rejecting this null suggests Xj is associated with Y in at least r distinct subgroups. If r = 1,
the partial conjunction hypothesis reduces to the original population-wide hypothesis of Candès et al. [5],
in (1); in that case, rejecting Hpc,r

0,j suggests the existence of least one subgroup in which Xj is conditionally
associated with Y . By contrast, rejecting the hypothesis in (A8) for r = G requires evidence of a conditional
association between Xj and Y across all subgroups.

One reason why it can be interesting to test Hpc,r
0,j is that this hypothesis may point towards the discovery

of variables whose association with Y is robust to changes in the covariate distribution [31]. Intuitively,
testing Hpc,r

0,j can be seen as a way for discovering conditional associations that do not involve interactions,
thus taking a point of view complementary to that of the subgroup-selective knockoff filter. The p partial
conjunction hypotheses defined in (A8) are relatively straightforward to test while provably controlling the
false discovery rate, if one starts with a collection W of subgroup-selective knockoff filter statistics satisfying
the flip-sign property in Theorem 1: W | ψ̂ d= W�U | ψ̂. In fact, it suffices to apply the multi-environment
knockoff filter of Li et al. [31] to these statistics, as explained below.

For each j ∈ {1, . . . , p}, let n−j count the negative signs among the W
(g)
j statistics for all subgroups g,

and let n0j be the number of zeros among them. For simplicity, assume ψ̂ partitions the covariate space
into G subgroups for each variable; this is without loss of generality, as it is otherwise sufficient to set the
remaining undefined statistics to zero if Ĝj < G for some j ∈ [p]. Then, compute

ppc,rj = Ψ

(
n−j − 1, (G− r + 1− n0j ) ∨ 0,

1

2

)
+ Uj ·Ψ′

(
n−j , (G− r + 1− n0j ) ∨ 0,

1

2

)
, (A9)

where Ψ(·,m, π) is the binomial cumulative distribution function, Ψ′(·,m, π) is the corresponding probability
mass, and Uj is a uniform random variable on [0, 1] independent of everything else. Further, define

|W pc,r
j | = w̄

(
|W (1)

j |, . . . , |W
G
j |
)
, (A10)

for some symmetric function w̄, such as that which multiplies the top r largest entries by absolute value:

w
(
|W (1)

j |, . . . , |W
(G)
j |

)
=

r∏
g=1

¯|W |(G−g+1)

j .

Above, ¯|W |(g)j are the order statistics for {|W (1)
j |, . . . , |W

(G)
j |}. Then, the false discovery rate for (A8) can

be controlled by applying the usual selective SeqStep+ sequential testing procedure of Barber and Candès
[19], thanks to a relatively simple extension of Theorem 1 from Li et al. [31].

Theorem A1. Selective SeqStep+ applied to the p-values (A9) ordered by (A10) controls the false discovery

rate for (A8) if the statistics W satisfy the flip-sign property in Theorem 1: W | ψ̂ d= W �U | ψ̂.

Proof. This result follows immediately from Theorem 1 in Li et al. [31] with a simple extension of Propo-
sition 5 therein. The original statement of Proposition 5 in Li et al. [31] assumed the statistics W to be
computed using data collected from separate and a-priori fixed experimental settings (or environments), but
it is easy to see that their proof only requires the flip-sign property established by our Theorem 1.
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Alternatively, the false discovery rate for (A8) could be (approximately) controlled by applying to the
p-values (A9) ordered by (A10) the accumulation test [64] instead of SeqStep+; this can be easily proved
with an analogous extension of Theorem 2 from Li et al. [31].

A4 Additional results from numerical experiments

A4.1 Experiments in a “transfer learning” setting

Here, we investigate the performance of the robust subgroup-selective knockoff filter from Appendix A3
applied in a “transfer learning” setting inspired by [50]. The goal is complementary to that of the experiments
in Section 4.1: we wish to detect variables with a robust association across subgroups with different covariate
distributions. In other words, we want to find which variables maintain their association with Y within a
future data set with covariate shift, in which the distribution of Z differs from the current one but the true
model for Y | X,Z is the same [50]. To simulate this scenario, we generate data from a model similar to
that in Section 4.1, but now only half of the non-null variables interact with the covariates; i.e., β

(i)
j = β̄

for half of the variables. Further, the data dimensions are increased to ensure sufficiently many discoveries
can be made. Specifically, the number of variables is p = 40, while the number of covariates is m = 160, of
which 120 are continuous. The covariate shift is imagined to be such that the 40 binary covariates are always
equal to zero instead of following a symmetric Bernoulli distribution. Therefore, the goal is to identify the
20 variables whose association does not involve interactions, as the covariate shift would make the others
irrelevant. These data are analyzed as in Section 4.1, with the only difference that the subgroup-selective
knockoff filter is replaced by its robust version outlined in Appendix A3, which is designed to test partial
conjunctions of the subgroup-specific conditional hypotheses (4).

Figure A4 reports on the results of 100 independent experiments, as a function of the sample size. The
performance of the robust version of the subgroup-selective knockoff filter is quantified in terms of the
empirical false discovery rate, the power, and the homogeneity of the reported findings, separately within
the training population and under covariate shift. In the latter case, only the discoveries of variables with
a direct conditional association with the outcome (i.e., not mediated by any interactions) are counted as
true, while the others are considered false positives. Therefore, neither the naive benchmark nor the vanilla
knockoff filter control this notion of false discovery rate under covariate shift because they tend to report all
associated variables, including those that are non-null only thanks to interactions. By contrast, the robust
subgroup-selective knockoff filter empirically controls the false discovery rate even under covariate shift.
The data-splitting benchmark here is a modified version of our robust subgroup-selective knockoff filter in
which half of the observations are used for partitioning the covariate space, without randomly swapping the
knockoffs, and the remaining half are utilized for testing the selected hypotheses. The results demonstrate
data-splitting is valid under covariate shift but it is not as powerful as our method, especially if the sample
size is moderately large.
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Figure A4: Performance of the robust subgroup-selective knockoff filter (RSSKF) and alternative benchmarks
for subgroup-specific conditional testing under covariate shift, in numerical experiments with synthetic data.
The findings summarized in the bottom panel are counted as true if and only if they report a variable whose
conditional association with the outcome is robust to changes in the covariate distribution. Other details
are as in Figure 1.

A4.2 Additional details about the blood donation data

Table A1: Randomized treatment-control assignments in a field experiment conducted by [51] to investigate
the effectiveness of different incentives for blood donors.

Assignment Size
Treatments (X1, . . . , X5)

Reminder Indiv. reward Friend Group reward Group gift

Control group 14k 0 0 0 0 0
Treated group 1 11k 1 0 0 0 0
Treated group 2 11k 1 1 0 0 0
Treated group 3 11k 1 0 1 0 0
Treated group 3 11k 1 1 1 0 0
Treated group 4 11k 1 1 1 0 0
Treated group 5 11k 0 1 1 1 0
Treated group 6 11k 1 1 1 0 1
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Table A2: Goodness-of-fit-diagnostics for knockoff treatments, for the blood donation data. The means and
standard deviations of the knockoffs approximately match those of the corresponding true treatments.

Treatments Knockoffs

X1 X2 X3 X4 X5 X̃1 X̃2 X̃3 X̃4 X̃5

Mean 0.825 0.412 0.550 0.138 0.138 0.822 0.411 0.549 0.139 0.140
Standard deviation 0.380 0.492 0.497 0.344 0.344 0.382 0.492 0.498 0.346 0.347

Table A3: Goodness-of-fit-diagnostics for knockoff treatments, for the blood donation data. The pairwise
correlations between different treatments approximately match those of the corresponding knockoffs, as well
as those between treatments and knockoffs. Smaller values of the diagonal correlation terms in the upper-
right block of the correlation matrix (in red) tend to correspond to higher power.

Treatments Knockoffs

X1 X2 X3 X4 X5 X̃1 X̃2 X̃3 X̃4 X̃5

X1 1 0.386 0.509 0.184 0.184 0.701 0.385 0.508 0.185 0.186
X2 0.386 1 0.197 -0.335 0.477 0.389 0.607 0.197 -0.337 0.481
X3 0.509 0.197 1 0.361 0.361 0.514 0.197 0.612 0.364 0.365
X4 0.184 -0.335 0.361 1 -0.159 0.186 -0.334 0.362 0.622 -0.161
X5 0.184 0.477 0.361 -0.159 1 0.186 0.478 0.362 -0.161 0.639

X̃1 0.701 0.389 0.514 0.186 0.186 1 0.371 0.496 0.187 0.187

X̃2 0.385 0.607 0.197 -0.334 0.478 0.371 1 0.189 -0.319 0.464

X̃3 0.508 0.197 0.612 0.362 0.362 0.496 0.189 1 0.347 0.347

X̃4 0.185 -0.337 0.364 0.622 -0.161 0.187 -0.319 0.347 1 -0.162

X̃5 0.186 0.481 0.365 -0.161 0.639 0.187 0.464 0.347 -0.162 1

A4.3 Design of semi-synthetic experiments with blood donation data

The logistic model used to generate the imaginary donation outcomes considered in Section 4.2 is:

logit (P [Y = 1 | X,Z]) = ϕ(X,Z),

with

ϕ(X,Z) =− c+
− b · 1 [male] + b · 1 [married] + b · 1 [resident]− b · 1 [age < 25] +

− b · 1 [student]− b · 1 [education < 16] + b · 1
[
Rh−

]
− b · 1 [blood type 6= O] +

+ a ·X1 [(1− 1 [resident]) + (1− 1 [donation within 12 months])] +

+ a ·X2 [1 [student] + 1 [student] · 1 [male]] +

+ a ·X3 [(1− 1 [male]) + (1− 1 [student])] +

+ a ·X4 [1 [student]) + 1 [male]] +

+ a ·X5 [(1− 1 [education < 16])] .

(A11)

Above, the coefficients are set as a = 0.4, b = 0.2, while c is such that half of the individuals in the data set
on average receive a simulated Y = 1.
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A4.4 Additional results from experiments with blood donation data

Table A4: Discoveries reported by the subgroup-selective knockoff filter in the analysis of semi-synthetic
blood donation data, as in Figure 2. The sample size is 80,000 and the nominal false discovery rate is 10%.

Treatment Subgroup Truth W Homeg. Heterog. Samples

Resident : 0 and Male : 1 Non-null 5.94 1.00 0.19 32,550
Resident : 0 and Male : 0 Non-null 5.47 1.00 0.19 19,866
Resident : 1 and Male : 1 Non-null 2.55 0.63 0.19 16,037

Reminder

Resident : 1 and Male : 0 Non-null 2.24 0.64 0.19 11,547

Rh-negative : 1 and Student : 1 Non-null 7.81 1.00 0.20 142
Individual reward

Rh-negative : 0 and Student : 1 Non-null 7.12 1.00 0.20 26,043

Married : 0 and Male : 0 Non-null 8.54 1.00 0.00 22,547
Married : 0 and Male : 1 Non-null 4.37 1.00 0.00 34,240Friends request
Married : 1 and Male : 0 Non-null 3.83 1.00 0.00 8,866

Group reward Student : 1 and Married : 0 Non-null 4.43 1.00 0.20 25,915

A5 Proof of Theorem 1

Proof of Theorem 1. It suffices to prove the flip-sign property, W | ψ̂ d= W � U | ψ̂, as the subsequent
corollary about false discovery rate control follows from there immediately as in [5]. In fact, the sign-flip

property is analogous to the standard one from [5], reviewed in Section 2.2, and it holds conditional on ψ̂,
which fully determines our hypotheses.

We begin by recalling that, by construction, both ψ̂ and Ĝ are determined by [X, X̃]swap(V),Y,Z, as
well as (possibly) by some completely independent random noise (e.g., due to a cross-validation procedure).

Therefore, conditional on [X, X̃]swap(V),Y,Z, we may treat ψ̂ and Ĝ as fixed. Similarly, the test statistics
W are determined by applying a (possibly randomized) function τ applied to a knockoff-augmented data
set [X, X̃],Y,Z. Since the possible source of randomness in τ is also independent of everything else, we may
ignore it without loss of generality, in order to simplify the notation as much as possible.

With this premise, we note that if follows from (6) that, for any fixed U ∈ {±1}Ĝ×p,

W([X, X̃]swap(U),Y,Z) = U�W([X, X̃],Y,Z).

Further, it follows from Lemma A1 that, conditional on
(

[X, X̃]swap(V),Y,Z
)

,

W([X, X̃]swap(U),Y,Z) d= W([X, X̃],Y,Z).

Combining the two equations above implies that, conditional on
(

[X, X̃]swap(V),Y,Z
)

,

W �U d= W.

This concludes the proof because ψ̂ is a function of [X, X̃]swap(V),Y,Z.

Lemma A1. For any subset S ⊆ {1, . . . , Ĝ} of true null hypotheses H(g)
0,j in (4),

[X, X̃]swap(S)
d= [X, X̃]

conditional on
(

[X, X̃]swap(V),Y,Z
)

, where V is the random matrix used to define ψ̂.
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Proof of Lemma A1. We prove the following stronger equality in joint distribution:(
[X, X̃]swap(S), [X, X̃]swap(V),Y,Z

)
d=
(

[X, X̃], [X, X̃]swap(V),Y,Z
)
.

By independence, it suffices to establish the above result for a single row of the data matrices:(
(X, X̃)swap(s), Z, Y, (X, X̃)swap(v)

)
d=
(

(X, X̃), Z, Y, (X, X̃)swap(v)

)
.

By construction of the knockoffs X̃, we know that

(X, X̃)swap(s) | Z d= (X, X̃) | Z. (A12)

Further, for any fixed swap s and random swap v it holds that v � s d= v, which implies

(X, X̃)swap(v) | (X, X̃)swap(s), Z
d= (X, X̃)swap(v) | (X, X̃), Z. (A13)

Combining (A12) and (A13) yields:(
(X, X̃)swap(s), (X, X̃)swap(v), Z

)
d=
(

(X, X̃), (X, X̃)swap(v), Z
)
. (A14)

Now, recall that Y |= X̃ | Z,X. Further, Y |= Xs | Z,X−s for all Xs swapped by s because the latter only
involves null variables. Therefore, by the same argument as in the proof of Lemma 3.2 in [5],

Y | Z, (X, X̃)swap(s), (X, X̃)swap(v)
d= Y | Z, (X, X̃), (X, X̃)swap(v). (A15)

Finally, combining (A14) with (A15) gives the desired result.
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