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Abstract

The estimation of coverage probabilities, and in particular of the missing mass, is a classical
statistical problem with applications in numerous scientific fields. In this paper, we study this
problem in relation to randomized data compression, or sketching. This is a novel but prac-
tically relevant perspective, and it refers to situations in which coverage probabilities must be
estimated based on a compressed and imperfect summary, or sketch, of the true data, because
neither the full data nor the empirical frequencies of distinct symbols can be observed directly.
Our contribution is a Bayesian nonparametric methodology to estimate coverage probabilities
from data sketched through random hashing, which also solves the challenging problems of re-
covering the numbers of distinct counts in the true data and of distinct counts with a specified
empirical frequency of interest. The proposed Bayesian estimators are shown to be easily ap-
plicable to large-scale analyses in combination with a Dirichlet process prior, although they
involve some open computational challenges under the more general Pitman-Yor process prior.
The empirical effectiveness of our methodology is demonstrated through numerical experiments
and applications to real data sets of Covid DNA sequences, classic English literature, and IP
addresses.

Keywords: Bayesian nonparametrics; coverage probability; Dirichlet process prior; distinct counts;
missing mass; Pitman-Yor process prior; random hashing; sketch.

1 Introduction

1.1 Estimation of coverage probabilities

The estimation of coverage probabilities, and in particular of the missing mass, is a classical statistical
problem, dating back to the seminal work of Alan M. Turing and Irving J. Good in 1940s (Good, 1953). To
understand this task, consider a generic population of individuals with values in a (possibly infinite) universe
S of symbols or species labels. In its most common formulation, the problem assumes n ≥ 1 observable data
points modeled as random samples from an unknown distribution p =

∑
j≥1 pjδsj , where pj is the probability

of symbol sj ∈ S. Then, denoting by (Nj,n)j≥1 the empirical frequencies of distinct symbols, the goal is to
estimate the coverage probability of order r ≥ 0:

pr,n =
∑
j≥1

pjI(Nj,n = r). (1)
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This is the total probability mass of the symbols with empirical frequency r. Of special interest is the
probability mass of symbols not observed in the sample, namely p0,n, also known as the missing mass. The
Good-Turing estimator (Good, 1953; Robbins, 1956, 1968) is the most popular nonparametric estimator of
pr,n, and it has been the subject of numerous theoretical and methodological studies; e.g., Efron (2003),
McAllester and Ortiz (2003), Orlitsky et al. (2003), Zhang and Zhang (2009), Mossel and Ohannessian
(2019), Ben-Hamou et al. (2017) and Ayed et al. (2018). A Bayesian nonparametric (BNP) counterpart of
the Good-Turing estimator has been proposed by Favaro et al. (2012), and it relies on the specification of
a (nonparametric) prior for the unknown distribution p (Lijoi et al., 2007; Favaro et al., 2009, 2012, 2016;
Arbel et al., 2017). See Balocchi et al. (2022) and references therein for an up-to-date review on frequentist
and Bayesian approaches to the estimation of coverage probabilities and generalizations thereof.

The problem of estimating coverage probabilities is encountered in many scientific fields. It first appeared
in ecology (Bunge and Fitzpatrick, 1993), but its relevance to other areas has grown dramatically over the
past three decades, primarily driven by applications in the biological and physical sciences (Mao and Lindsay,
2002; Gao et al., 2007; Daley and Smith, 2013). An up-to-date account on the use of coverage probabilities
in biology can be found in Deng et al. (2019). The estimation of the missing mass in biology is typically
related to the optimal allocation of resources. In genetic studies, for example, the missing mass may indicate
the probability of detecting unobserved genetic variants in a new sample, which is useful to determine how
many additional genomes must be sequenced to explain a certain proportion of genetic variation (Ionita-
Laza et al., 2009). The estimation of coverage probabilities has also found applications in machine learning
(Zhang, 2005; Bubeck et al., 2013), computer science (Motwani and Vassilvitskii, 2006), information theory
(Orlitsky et al., 2004; Ben-Hamou et al., 2018), empirical linguistics and natural language processing (Gale
and Sampson, 1995; Ohannessian and Dahleh, 2012), and in forensic DNA analysis (Anevski et al., 2017;
Cereda, 2017).

1.2 Data sketching

While the estimation of coverage probabilities has a long history in the statistics literature, it is not yet a well-
studied problem in relation to randomized data compression, or sketching. Precisely, this refers to situations
in which coverage probabilities must be estimated based on a compressed and imperfect summary, or sketch,
of the true data, because neither the full data nor the corresponding empirical frequencies of distinct symbols
can be observed directly. In general, sketching is designed to provide compact data structures that can be
easily updated and queried in order to estimate meaningful statistics of the true data, the most common
being the number of distinct counts and their corresponding empirical frequencies; see the monographs by
Cormode et al. (2012) and Cormode and Yi (2020) for a comprehensive account on sketching. Sketching
is utilized in various applications within biological sciences, to allow time and memory-efficient statistical
analyses of large data sets containing many distinct symbols (Zhang et al., 2014; Solomon and Kingsford,
2016; Berger et al., 2018; Marçais et al., 2019; Leo Elworth et al., 2020), or as a solution to protect sensitive
individual information (Kockan et al., 2020). Sketching is increasingly deployed in many fields involving
sensitive information and privacy concerns (Melis et al., 2016; Cormode et al., 2018), including in applications
seeking to identify most popular websites (Erlingsson et al., 2014), count new words typed by users (Bassily
et al., 2017), analyze wireless device locations (Ding et al., 2017), or track viewership of targeted online
advertisements (Heule et al., 2013; Cormode, 2017).

The estimation of coverage probabilities from sketched data is a relevant problem in many of the afore-
mentioned domains. For example, in marketing, this task may be useful in order to estimate the likelihood
of a targeted advertisement reaching a new user based on anonymized data, allowing the design of more
effective online campaigns (Farahat and Bailey, 2012) that respect consumer privacy (Toubiana et al., 2010).
In the context of biological sciences, it may lead to principled estimates of the numbers of additional bacterial
or viral genomic sequences needed to ensure sufficient genetic diversity in large genomic archives (Bradley et
al., 2013). Further, in the context of natural language processing, it may be leveraged to estimate the prob-
ability of rare words (Ohannessian and Dahleh, 2012) using data that was sketched due to communication
bottlenecks or privacy concerns (Rothchild et al., 2020). Despite such potential impacts, we are not aware
of any statistical or algorithmic approach to this problem; hence the motivation for this paper.
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1.3 Our contributions

The contribution of this paper is a BNP methodology to estimate coverage probabilities from data sketched
through a single hash function, which also solves the challenging problems of estimating or recovering the
number of distinct counts in the true data, as well as the number of distinct counts with empirical frequency
r ≥ 1. To the best of our knowledge, this is the first work estimating coverage probabilities from sketched
data, as well as the first one to recover the partition structure of the true data. Concretely, we focus on a
sketch obtained by means of a random hash function which maps each S-valued data point into the lower
dimensional set {1, . . . , J}, for a suitable choice of the number of buckets J ≥ 1, in such a way that distinct
data points tend to populate all buckets uniformly (Cormode and Yi, 2020). This is a simplified (single-
hashing) version of the popular count-min sketch algorithm of Cormode and Muthukrishnan (2005). Note
that sketching through hash functions compresses the data at the cost of some loss of information due to
possible random hash collisions—different symbols may end up in the same bucket.

As a BNP model, here we assume the sketch to be obtained from n ≥ 1 data points randomly sampled
from an unknown distribution p, which is endowed by a Dirichlet process (DP) prior (Ferguson, 1973). By re-
lying on a peculiar finite-dimensional projective property of the DP, which leads to a Dirichlet-Multinomial
distribution for the sketched data, our main result provides a BNP estimator of pr,n with respect to the
squared loss. Then, as a corollary, we derive BNP estimators for the number of distinct counts observed,
and the number of distinct counts with empirical frequency r ≥ 1. These estimators are simple and can
scale to massive data sets. Further, the parameters of the prior distribution can be easily estimated by a
computationally efficient empirical Bayes approach, which makes our solution practical in real-world appli-
cations. This paper additionally presents an extension of the above results to the Pitman-Yor process (PYP)
prior, which is a generalization of the DP prior with a more flexible tail behaviour, ranging from heavy
power-law tails to the geometric tails of the DP prior (Pitman and Yor, 1997). The PYP does not feature an
analogous finite-dimensional projective property, and thus it turns out to yield an unwieldy generalization of
the Dirichlet-Multinomial distribution for the sketched data. Consequently, the BNP estimator of pr,n under
the PYP prior admits a closed form expression but quickly becomes intractable to evaluate as the sample
size n grows. Although we also derive an alternative representation that in theory enables a Monte Carlo
approximation of the estimator, we will explain that the problem under the PYP prior remains computa-
tionally challenging even for moderately large n, and that is why the applications presented in this paper
will focus on the DP prior.

The effectiveness of our BNP methodology is tested via numerical experiments based on synthetic data
and with three real-data applications. In particular, we analyze: a data set of k-mers within SARS-CoV-
2 virus DNA sequences published by the National Center for Biotechnology Information (Hatcher et al.,
2017), a data set of 2-grams from classic pieces of English literature from the Gutenberg Corpus (Project
Gutenberg, 2022), and a data set of IP addresses originally utilized to study personalized telecommunication
service degradation policies (Rojas et al., 2018). Although some of these data sets exhibit a power-law tail
behaviour that is not well-described by the DP prior, our results demonstrate the proposed methodology
often leads to reasonable approximations of the coverage probabilities and missing mass, as long as power-law
tails are not too accentuated.

1.4 Organization of the paper

The paper is structured as follows. Section 2 reviews the relevant BNP model under the PYP prior, of which
the DP prior is a special case, and the corresponding methods for estimating coverage probabilities from the
true data. Section 3 introduces our BNP model for sketched data, obtains the corresponding estimators for
the coverage probabilities and the number of distinct counts under the DP prior, and then extends these
results to the more general PYP prior. Section 4 applies our BNP methodology to synthetic and real data.
Section 5 concludes by discussing promising directions for future research. All mathematical proofs and
additional numerical experiments are deferred to the appendices.
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2 Review of BNP estimation of coverage probabilities

2.1 A BNP model under the PYP and DP prior

For n ≥ 1, let (x1, . . . , xn) be a collection of S-valued data ponts. The BNP approach assumes that data are
modeled according to a random sample Xn = (X1, . . . , Xn) from an unknown discrete distribution P , which
is endowed with a PYP prior. Formally, we write

X1, . . . , Xn |P
iid∼ P

P ∼ PYP(α, θ),
(2)

where PYP(α, θ) denotes the PYP prior indexed by a discount parameter α ∈ [0, 1) and a scale parameter
θ > −α. An intuitive definition of the PYP is given by its stick-breaking construction (Perman et al., 1992;
Pitman, 1995). Let: i) (Vi)i≥1 be independent random variables, with each Vi following a Beta(1−α, θ+ iα)
distribution; ii) (Sj)j≥1 be random variables following non-atomic distribution ν on S and independent of
each other as well as of the Vi’s. If P1 = V1 and Pj = Vj

∏
1≤i≤j−1(1 − Vi) for j ≥ 1, so that Pj ∈ (0, 1)

for any j ≥ 1 and
∑
j≥1 Pj = 1 almost surely, then the (almost sure) discrete random probability measure

P =
∑
j≥1 PjδSj is a PYP on S with parameters (α, θ). The DP prior corresponds to α = 0. The parameter

α ∈ [0, 1) controls the tail behaviour of P . In particular, if (P(j))j≥1 denote the decreasingly ordered
random probabilities Pj ’s of P , then, for α ∈ (0, 1), as j → +∞ the P(j)’s follow a power-law distribution of
exponent c = α−1 (Pitman and Yor, 1997). That is, α ∈ (0, 1) controls the power-law tail behaviour of the
PYP through the small P(j)’s: the larger α, the heavier the tail of P . As a limiting case for α→ 0, the DP
features geometric tails (Pitman, 2006, Chapter 3 and Chapter 4).

2.2 Sampling properties of the PYP and DP prior

Due to the (almost sure) discreteness of the PYP, a random sample Xn from P ∼ PYP(α, θ) induces a
random partition of [n] = {1, . . . , n} into Kn = k ≤ n blocks, labelled by {S∗1 , . . . , S∗Kn}, with corresponding
frequencies (N1,n, . . . , NKn,n) = (n1, . . . , nk) such that ni > 0 and

∑
1≤i≤k ni = n (Pitman, 1995). The

distribution of this partition is determined by the predictive distribution, or generative scheme, of the PYP
prior, that is

Pr[X1 ∈ ·] = ν(·)

and for n ≥ 1

Pr[Xn+1 ∈ · |Xn] =
θ + kα

θ + n
ν(·) +

1

θ + n

k∑
i=1

(ni − α)δS∗i (·). (3)

The expression in (3) provides the conditional distribution of the random partition of [n+ 1] obtained after
sampling one additional data point, given the previous random partition of [n]. Note that (3) is a linear
combination of: i) the probability (θ+ kα)/(θ+ n) that Xn+1 belongs to a new symbol, i.e., creating a new
block in the partition of [n]; ii) the probability (ni−α)/(θ+n) that Xn+1 is of symbol S∗i , i.e., increasing by
1 the size of the block S∗i in the partition of [n], for i = 1, . . . , k (Pitman, 2006, Chapter 3). The parameter
α ∈ (0, 1) controls the rates at which previous symbols are re-observed and new symbols arise. A larger value
of α corresponds to a higher probability of observing new symbols. If α = 0, i.e. under the DP prior, the
probabilities in (3) become proportional to the frequencies of each symbol, and the probability of generating
a new symbol no longer depends on the number of observed symbols (Bacallado et al., 2017).

For any r ∈ [n], let Mr,n be the number of distinct symbols with frequency r in a sample Xn from
P ∼ PYP(α, θ); i.e., Mr,n =

∑
1≤i≤Kn I(Ni,n = r) such that

∑
1≤r≤nMr,n = Kn and

∑
1≤r≤n rMr,n = n.

The distribution of Mn = (M1,n, . . . ,Mn,n) is given by

Pr[Mn = (m1, . . . ,mn)] = n!

(
θ
α

)
(
∑n
i=1mi)

(θ)(n)

n∏
i=1

(
α(1− α)(i−1)

i!

)mi 1

mi!
, (4)

where (a)(u) is the u-th rising factorial of a; i.e., (a)(u) =
∏

0≤i≤u−1(a + i), for a ≥ 0 and u ∈ N0 (Pitman,
1995). The distribution in (4) generalizes the Ewens sampling model, which corresponds to α = 0. The
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distribution Kn follows by a suitable marginalization of (4); i.e.,

Pr[Kn = k] =

(
θ
α

)
(k)

(θ)(n)
C (n, k;α), (5)

where C (u, 0, α) = 0 for all u ≥ 1, and C (0, 0;α) = 1, while for any a > 0 and v ≤ u ∈ N0,

C (u, v; a) =
1

v!

v∑
i=0

(−1)i
(
v

i

)
(−ia)(u). (6)

See Appendix A for details about the generalized factorial coefficients in (6) and their interplay with (signless)
Stirling numbers as α → 0. See Appendix B for an account on the tail behaviour of the PYP prior with
respect to the large n asymptotic behaviour of Kn and Mr,n.

2.3 BNP estimation of coverage probabilities

Under the BNP model in (2), an estimator of pr,n, with respect to the squared loss, is obtained by a direct
application of the predictive distribution in (3). Assume the random sample Xn from P ∼ PYP(α, θ) features
Kn = k distinct symbols, labelled by {S∗1 , . . . , S∗Kn}, with frequencies (N1,n, . . . , NKn,n) = (n1, . . . , nk) such
that Mr,n = mr, and define

S0 = S− {S∗1 , . . . , S∗Kn},

and for r ≥ 1

Sr =

Kn⋃
i=1

{S∗i ∈ {S∗1 , . . . , S∗Kn} : Ni,n = r}.

That is, S0 denotes the set of symbols not observed in Xn, whereas Sr denotes the set of symbols observed
in Xn with frequency r, for r = 1, . . . , n. Then, from (3) it holds that

p̂r,n = E[P (Sr) |Xn] = Pr[Xn+1 ∈ Sr |Xn] =


θ+kα
θ+n if r = 0

mr(r−α)
θ+n if r ≥ 1

(7)

is a BNP estimator of pr,n, with respect to the squared loss, under the PYP prior. The estimator in (7) is
the BNP counterpart of the Good-Turing estimator. We refer to Favaro et al. (2012) Favaro et al. (2016)
and Arbel et al. (2017) for a detailed account on (7), with emphasis on credible intervals, and its interplay
with the Good-Turing estimator.

3 BNP estimation of coverage probabilities from sketched data

3.1 A BNP model for data sketched through random hashing

We consider a situation in which the S-valued data points (x1, . . . , xn) are not directly observable, and
instead we have access only to a sketch of them obtained through random hashing (Mitzenmacher and Upfal
, 2017, Chapter 5 and Chapter 15). For an integer J ≥ 1, let h be a (random) hash function of width J ,
which is a random mapping from S to [J ] = {1, . . . , J} chosen from a pairwise independent hash family HJ ,
independently of Xn. That is, h : S→ [J ], and, for any j1, j2 ∈ [J ] and fixed x1, x2 ∈ S such that x1 6= x2,

Pr[h(x1) = j1, h(x2) = j2] =
1

J2
.

Pairwise independence between hash functions is also known as strong universality, and it implies uniformity,
meaning that Pr[h(x) = j] = J−1 for any j = 1, . . . , J . Strong universality is known to provide a common
setting of mathematical convenience, but it not easy to achieve exactly in practice. However, real-world hash
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functions effectively perform as if they were perfectly random (Chung et al., 2013). Hashing (x1, . . . , xn)
through h produces a vector (sketch) Cn = (C1,n, . . . , CJ,n), whose j-th element (bucket) is

Cj,n =

n∑
i=1

I(h(xi) = j),

so that
∑

1≤j≤J Cj,n = n. In general, C has a smaller (physical) size than (x1, . . . , xn) due to the hash
collisions (Cormode and Yi, 2020, Chapter 3). The above sketch is a special version of the popular count-
min sketch of Cormode and Muthukrishnan (2005), which simultaneously sketches the same data points
using several independent hash functions.

Our BNP model for the sketch Cn relies on two assumptions: i) (x1, . . . , xn) are modeled as a random
sample Xn = (X1, . . . , Xn) from P ∼ PYP(α, θ), i.e., according to the BNP model in (2); ii) h is a hash
function from a strong universal hash family HJ , and it is independent of Xn, i.e. independent of P ∼
PYP(α, θ). Then, we write the BNP model

Cj,n =

n∑
i=1

I(h(Xi) = j) j = 1, . . . , J

h ∼ HJ

X1, . . . , Xn |P
iid∼ P

P ∼ PYP(α, θ).

(8)

The BNP model in (8) may be viewed as a finite-dimensional projection on [J ] of the BNP model in (2), with
the projection determined by h. As the random partition (Kn, N1,n, . . . , NKn,n) is a sufficient statistic for the
Xi’s under (2), the sketch Cn is a sufficient statistics for the h(Xi)’s under (8). The distributional properties
of Cn are thus critical to make any inferences under the BNP model in (8), and their (mathematical)
tractability depends on the finite-dimensional projective properties of the prior distribution. We will show
how this peculiar feature distinguishes the DP prior from the more general PYP prior.

Under the BNP model in (8), we consider the problem of estimating the coverage probability pr,n for
any r ≥ 0, given only the sketch Cn. In particular, for any r ≥ 0, we will compute

p̃r,n = E[P (Sr) |Cn = (c1, . . . , cJ)] = Pr[Xn+1 ∈ Sr |Cn = (c1, . . . , cJ)], (9)

which provides a BNP estimator of pr,n with respect to the squared loss. Further, we will also present a
solution to the problem of estimating or recovering from Cn the number Kn of distinct counts in the true
data (x1, . . . , xn), as well as the number Mr,n of distinct counts with empirical frequency r ≥ 1. That is,
still under the model (8), we will compute

k̃n = E[Kn |Cn = (c1, . . . , cJ)],

and, for any r ≥ 1,
m̃r,n = E[Mr,n |Cn = (c1, . . . , cJ)],

which are the BNP estimators of Kn and Mr,n, respectively, with respect to the squared loss. In particular,
by resorting to the BNP estimator p̂r,n displayed in (7), which is a linear function of Mr,n, it becomes possible

to express k̃n and m̃r,n as suitable linear functions of the p̃r,n’s. In particular, this result shows how under
the BNP approach with a PYP prior, the estimation of coverage probabilities from the sketch Cn also solves
the problem of recovering the partition structure (M1,n, . . . ,Mn,n) of the true data (x1, . . . , xn). Below, we

will first derive p̃r,n, k̃n and m̃r,n explicitly for α = 0, i.e., under the DP prior, and then we shall present
their extensions to the more general case of α ∈ [0, 1).

3.2 Estimation of coverage probabilities under the DP prior

The DP features a peculiar finite-dimensional projective property, according to which the finite-dimensional
(marginal) distributions of P ∼ PYP(0, θ) are Dirichlet distribution (Ferguson, 1973). Because of the strong
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universality of the hash family HJ , i.e., uniformity, and of the independence between h ∼ Hj and P , it turns
out that h induces a fixed partition {B1, . . . , BJ} of S, with Bj = {s ∈ S : h(s) = j} and ν(Bj) = J−1 for
j ∈ [J ]. Accordingly, the finite-dimensional projective property of the DP prior implies that

(P (B1), . . . , P (BJ)) ∼ Dirichlet

(
θ

J
, . . . ,

θ

J

)
, (10)

where Dirichlet(·) denotes the Dirichlet distribution. See also Regazzini (2001) and Ghosal and van der
Vaart (2017) for details. According to (10), under the model in (8) with α = 0,

Pr[Cn = (c1, . . . , cJ)] =

(
n

c1, . . . , cJ

)
1

(θ)(n)

J∏
j=1

(
θ

J

)
(cj)

, (11)

which is a Dirichlet-Multinomial distribution with parameter (n, θ/J, . . . , θ/J). The distribution in (11) leads
to an explicit and straightforward expression of p̃r,n and, as we shall discuss later, it also allows estimating
the prior parameter θ > 0 from the information contained in the sketch Cn. The next theorem exploits (11),
in combination with the exchangeability of the Xi’s and some combinatorial arguments related to Cn, to
obtain p̃r,n. We also provide the estimators k̃n and m̃r,n, for r ≥ 1, as functions of the p̃r,n’s.

Theorem 1. For n ≥ 1, assume the sketch Cn to be modeled according to the BNP model in (8) with α = 0,
i.e., under the DP prior, and let Cn = (c1, . . . , cJ). Then, for any r ≥ 0,

p̃r,n =

(
θ
J

)
r!

(θ + n)

J∑
j=1

(
cj
r

)( θ
J

)
(cj−r)(
θ
J

)
(cj)

. (12)

Moreover, for r ≥ 1

m̃r,n =
θ + n

r
p̃r,n, (13)

and

k̃n =
∑
r≥1

m̃r,n = −θψ
(

1− θ

J

)
+
θ

J

J∑
j=1

ψ

(
1− θ

J
− cj

)
, (14)

where ψ is the digamma function; i.e., ψ(x) = d
dx log Γ(x).

See Appendix C.1 for the proof of Theorem 1. The estimator p̃r,n is the natural counterpart, with respec
to sketched data, of the BNP estimator p̂r,n in (7) with α = 0, i.e., under the DP prior. In particular, p̂r,n
is recovered from p̃r,n for a lossless hash function h : S→ S. As one would expect, it can be seen from (12)
that p̃r,n = 0 for all r > max{c1, . . . , cJ}. Of special interest is the estimator p̃0,n of the missing mass p0,n,
i.e.,

p̃0,n =
θ

θ + n
,

which, interestingly, coincides with p̂0,n. However, the equivalence between the estimators p̂0,n and p̃0,n

under the DP prior should not be surprising, because p̂0,n depends on Xn only through the sample size n.
This is a peculiar property of the DP prior. In fact, according to the Johnson’s “sufficientness” postulate, the
DP prior is characterized as the sole (discrete) nonparametric prior for which p̂0,n depends on the sampling
information only through n (Regazzini, 1978; Zabell, 1982). To make Theorem 1 practically applicable, one
must first estimate the prior parameter θ from the information contained in the sketch Cn. This problem
can be solved with an empirical Bayes approach that exploits the Dirichlet-Multinomial distribution in
(11). In particular, we estimate the unknown parameter θ with the value θ̃ that maximizes the (marginal)
likelihood of Cn in (11). This likelihood function is log-concave in log(θ) (Cai et al., 2018), which makes
it computationally easy to estimate θ using standard optimization techniques. Alternatively, one could also
estimate θ by placing a suitable prior distribution on it and following a fully Bayes, or hierarchical Bayes,
approach, but that option is not explored in this paper.
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3.3 Estimation of coverage probabilities under the PYP prior

Theorem 1 is extended here to the general case of the PYP prior, with any α ∈ [0, 1) and θ > −α. As
before, because of the strong universality of the hash family HJ and of the independence between h ∼ Hj
and P , it turns out that h induces a fixed partition {B1, . . . , BJ} of S, with Bj = {s ∈ S : h(s) = j} and
ν(Bj) = J−1 for j ∈ [J ]. However, the distribution of (P (B1), . . . , P (BJ)) is not available in closed-form for
any α ∈ (0, 1) because the PYP does not feature a finite-dimensional projective property analogous to that
of the DP. Only some moment formulae for this distribution are available (Sangalli, 2006), though they have
unwieldy expressions whose computation are impractical. See also Pitman and Yor (1997) and references
therein for further details. In particular, if I(c1,...,cJ ) denotes the cartesian product ×1≤s≤J{0, 1, . . . , cs},
with i = (i1, . . . , iJ) being an element of I(c1,...,cJ ) such that |i| = i1 + · · ·+ iJ , then Sangalli (2006, Equation
3.3) shows that

Pr[Cn = (c1, . . . , cJ)] =

(
n

c1, . . . , cJ

)
1

(θ)(n)

∑
i∈I(c1,...,cJ )

(
θ
α

)
(|i|)

J |i|

J∏
j=1

C (cj , ij ;α), (15)

The distribution in (15) reduces to the Dirichlet-Multinomial distribution in (11) as α → 0; see Appendix
C.2 for details. The next theorem exploits (15), in combination with the exchangeability of the Xi’s and
some combinatorial arguments related to Cn, to obtain p̃r,n. We also provide the estimators k̃n and m̃r,n,
for r ≥ 1, as functions of the p̃r,n’s.

Theorem 2. For n ≥ 1, assume the sketch Cn to be modeled according to the BNP model in (8), and let Cn =
(c1, . . . , cJ). For any a ∈ Z and j ∈ [J ], let I(c1,...,cJ ),j,a be the cartesian product ×Js=1{0, 1, . . . , cs + aδs,j},
where δs,j is the Kronecker delta, and let i = (i1, . . . , iJ) be an element of I(c1,...,cJ ),j,a, with |i| = i1 + · · ·+iJ .
Then, for any r ≥ 0,

p̃r,n =

(
θ
J

)
(1− α)(r)

(θ + n)

J∑
j=1

(
cj
r

)∑
i∈I(c1,...,cJ ),j,−r

( θ+αα )|i|
J|i|

∏J
s=1 C (cs − rδs,j , is;α)∑

i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1 C (cs, is;α)

. (16)

Moreover, for r ≥ 1

m̃r,n =
θ + n

r − α
p̃r,n (17)

and

k̃n =
θ + n

α
p̃0,n −

θ

α
. (18)

See Appendix C.3 for the proof of Theorem 2. Note that Theorem 1 follows directly from Theorem 2
by taking the limit of α→ 0; see Appendix C.4 for details. The estimator p̃r,n in Theorem 2 is the natural
counterpart, with respect to sketched data, of the BNP estimator p̂r,n in (7). As for Theorem 1, it follows
from (16) that p̃r,n = 0 and m̃r,n = 0 for any r > max{c1, . . . , cJ}. Of special interest is the missing mass
estimator p̃0,n,

p̃0,n =
θ

θ + n

∑
i∈I(c1,...,cJ )

( θ+αα )|i|
J|i|

∏J
s=1 C (cs, is;α)∑

i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1 C (cs, is;α)

. (19)

Under suitable assumptions on the large-n behaviour of the cj ’s, one can obtain a simple large n asymptotic
approximation of (19). In this respect, it is useful to observe that limn→+∞ E[n−1Cj,n] = J−1 for any
j ∈ [J ]; this follows from (15) by de Finetti’s theorem, and it is a consequence of the strong universality of
the hash family HJ and of its independence of Xn. Now, for α ∈ (0, 1), if we assume that cj = nJ−1 for any
j ∈ [J ], then

lim
n→+∞

n1−αp̃0,n = J1−αΓ(θ + Jα− α+ 1)

Γ(θ + Jα)
. (20)

See Appendix C.5 for the proof of Equation (20). The result in (20) leads to a large n approximation of
(19), though this is only of a qualitative nature because we cannot quantify the approximation error. In
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particular, because of the assumption on the cj ’s, we expect that a very large n is required in order to make
this asymptotic approximation accurate.

Unfortunately, the estimator p̃r,n in (16) is impractical to compute because it involves summing a po-
tentially very large number of generalized factorial coefficients, depending on the number of buckets J . In
general, generalized factorial coefficients can be computed recursively as

C (u+ 1, v; a) = (u− va)C (u, v; a) + aC (u, v + 1; a), (21)

for any a > 0, v ≤ u ∈ N0, with the proviso C (u, 0, α) = 0 for u ≥ 1 and C (0, 0;α) = 1 (Charalambides,
2005, Theorem 2.18). The recursion follows directly from (6), which does not admits a closed-form solution;
see Appendix A for details on generalized factorial coefficients. Therefore, as the sample size n grows, the
computational cost of evaluating p̃r,n in (16) becomes overwhelming, thus preventing the implementation of
our BNP estimator in concrete applications for α ∈ (0, 1). This computational challenge motivates the results
in next section, which show that the estimator p̃r,n can be equivalently rewritten in terms of expected values
of random variables that can be sampled exactly, thereby opening a path for a Monte Carlo evaluation of
(16). Note that the practical problem of estimating empirically the parameters of the PYP prior is postponed
until Section 3.5.

3.4 Monte Carlo approximation of p̃r,n under the PYP prior

The following result (proved in Appendix C.6) shows that the estimator p̃r,n can be written as a suitable
functional of the number of distinct symbols in a random sample from P ∼ PYP(α, θ), for any α ∈ (0, 1).
This will be useful to enable a Monte Carlo evaluation of (16), in combination with the exact and approximate
Monte Carlo techniques for sampling the number of distinct symbols under our BNP model with PYP prior.

Proposition 3. For n ≥ 1, assume the sketch Cn to be modeled according to the BNP model in (8), and
let Cn = (c1, . . . , cJ). For any s ∈ [J ], let Kcs be the number of distinct symbols in a random sample Xcs

from P ∼ PYP(α, θ), which is independent of Cn. Note that Kci is assumed to be independent of Kcj for
all i 6= j. Then, for any r ≥ 0,

p̃r,n =

(
θ
J

)
(1− α)(r)

(θ + n)

J∑
j=1

(
cj
r

)
(θ)(cj−r)E[Zr,j ]

(θ)(cj)E[Z ′r,j ]
, (22)

where

Zr,j =

(
1 + θ

α

)
(
∑J
s=1Kcs−rδs,j )

J
∑J
s=1Kcs−rδs,j

∏J
s=1

(
θ
α

)
(Kcs−rδs,j)

,

Z ′r,j =

(
θ
α

)
(
∑J
s=1Kcs−rδs,j )

J
∑J
s=1Kcs−rδs,j

∏J
s=1

(
θ
α

)
(Kcs−rδs,j)

.

(23)

The expression in (22) suggests a Monte Carlo approximation of the estimator p̃r,n through independent
random sampling of Kcs−r. Sampling Kcs−r reduces to sampling cs − r − 1 independent Bernoulli random
variables, due to form of the predictive distribution in (3); see Algorithm 3.4. This operation can be
made computationally faster through large-sample approximations in the limit of large cs, for r � cs. For
α ∈ (0, 1), a first-order approximation of p̃r,n for large values of cs is obtained from (29) by replacing each Kcs

with cαs Sα,θ. Random sampling of Sα,θ can then be carried out efficiently through adaptive rejection sampling
(Devroye, 2009). Unfortunately, the random variables Zr,n and Z ′r,n in (23) tend to have a highly skewed
distribution for all but very small values of n, and this makes it difficult to obtain even approximately
unbiased estimates of the ratio of expected values in (22); see Quenouille (1956). Although solutions to
mitigate the bias of ratio estimators have been proposed (Tin, 1965), the specific problem we face in (22) is
especially challenging because Zr,n and Z ′r,n involve a ratio of rising factorials, which makes the distribution
of their ratio extremely skewed. Therefore, the number of Monte Carlo samples required for an accurate
estimate of (22) tends to be prohibitively large even for moderate values of n, as demonstrated empirically
in Section 4. This is a practical limitation of Theorem 3, which we have not yet been able to overcome.
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Algorithm 1 Sampling Kc−r for any r ∈ {0, . . . , c}
K[0]← 0;
K[1]← 1;
i← 1;
while i ≤ c do

Ber ← random sample from Bernoulli
(
θ+αK[i−1]

θ+i

)
;

K[i]← K[i− 1] +Ber;
i← i+ 1;

end while
return reverse of K

3.5 Empirical Bayes estimation of (α, θ) from sketched data

To make the results of Theorem 2 directly applicable, one must first estimate the PYP prior parameters
α ∈ (0, 1) and θ > −α from the sketch Cn. Differently from the special case of the DP prior, for which Cn

has the Dirichlet-Multinomial distribution in (11), the distribution of Cn generally takes the cumbersome
expression in (15), whose evaluation involves the same computational issues as the estimator in (16). This
difficulty prevents a maximum marginal likelihood strategy in the spirit of that described in Section 3.2 for
the special case of the DP prior. An alternative route is offered by the likelihood-free Wasserstein distance
approach (Bernton et al., 2019) first proposed by Dolera et al. (2022) in the context of BNP empirical
frequency estimation from a sketch obtained from multiple independent hash functions. This solution is still
quite computationally expensive if the sample size n is very large, but it is easy to explain and implement.The
key idea is to simulate independent data sets X′n from the BNP model in (8) using different values of the
prior parameters, namely (α′, θ′). The simulated data are sketched into C′n with the same hash function h
as in (8). Then, the sorted entries of the vector C′n are compared, with respect to the Wasserstein distance,
to the sorted entries of the original sketch Cn. The empirical estimates for (α, θ) are defined as those
approximately minimizing the Wasserstein distance between the empirical distributions of Cn and C′n. If n
is very large, the computational cost of this procedure can be greatly reduced, at the cost of some additional
approximations, by simulating a smaller data set X′n′ with n′ � n, and comparing the resulting C′n with a
down-scaled version of Cn, in which all entries of the latter are multiplied by n′/n. We refer to Dolera et
al. (2022) for further details.

4 Numerical experiments

We begin by investigating the empirical performance on simulated data of the BNP coverage probability
estimators derived in Section 3.2, for the special case of the DP prior, and in Section 3.3, for the general
PYP prior. Synthetic data are generated from the BNP model in (8) using different values of the parameters
(α, θ), and then they are sketched as in (8) with a hash function of width 128. Our BNP estimates are
compared to the true coverage probabilities in (1), which are available in these experiments because we
know the prior parameters of the true data-generating model and have access to the non-sketched data. All
experiments are repeated 20 times and the results averaged, utilizing independent data sets and independent
hash functions.

Figure 1 compares the true and estimated missing-mass probabilities as a function of the sample size,
separately for data generated from DP prior models with α = 0 and different values of θ, and for PYP
models with α = 0.5 and different values of θ. In Figure 1 (a), where α = 0, we compare estimated
probabilities calculated with perfect (oracle) knowledge of the true data-generating parameter θ to those
based on an empirical Bayes estimate of θ, as detailed in Section 3.2. Both estimates coincide almost exactly
with the true probabilities. In Figure 1 (b), where α = 0.5, we compare two versions of our estimators
from (19) approximated via the Monte Carlo approach detailed in Section 3.4 utilizing 100,000 independent
realizations of Zr,n and Z ′r,n, with and without approximately debiasing the ratio of expected values using
Tin’s method (Tin, 1965). For simplicity, we do not estimate θ empirically here, relying instead on the
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Figure 1: True and estimated missing mass for sketched data simulated from a DP prior model (a)
with different parameters θ, and from a PYP prior model (b) with different parameters (α, θ). In
(b), the Monte Carlo estimated probabilities are not shown for n > 1000.

true value of this parameter. These results show our BNP estimates coincide almost exactly with the true
missing mass when the sample size n is very small. By contrast, if n is larger, our Monte Carlo BNP
method overestimates the missing mass due to the skewness of Zr,n and Z ′r,n in (22); see Quenouille (1956).
Unfortunately, even the approximate debiasing technique of Tin (1965) mitigates but does not eliminate
this problem. Figure 2 compares the true and estimated coverage probabilities for different values of the
frequency r, in the special case of the DP prior with θ = 1000, and for two different values of the sample
size. These results confirm our BNP estimates from Section 3.2 are accurate, regardless of whether the
prior parameter θ is known or estimated empirically from the sketched data. Additional results from these
experiments are in Appendix D.
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Figure 2: True and estimated coverage probabilities pr,n for synthetic data sets of different size
generated from a DP prior with θ = 100, for different values of r. The height of the error bars is
equal to two standard errors. Other details are as in Figure 1.

Figure 7 in Appendix D reports on results analogous to those in Figure 1 (b), but varying the data-
generating parameter α instead of θ. Figures 8 and 9 in Appendix D show our BNP estimates of the
missing mass calculated under a possibly mis-specified assumption that α = 0, for synthetic data generated

11



from a PYP prior model with different values of (α, θ). In these experiments, the parameter θ is estimated
empirically via maximum marginal likelihood. Intuitively, we see our estimates may not be accurate if the
prior model is mis-specified, especially if the sample size is large. In particular, the estimates computed with
the assumption that α = 0 tend to underestimate the missing mass if the data-generating model exhibits
power-law tail behaviour, as it is the case for the PYP with larger α. Analogous conclusions can be drawn
from Figure 10, which reports on similar experiments based on data simulated from a Zipf distribution.

Next, we turn our attention to the estimation of Kn, the number of distinct species in the sample.
Figure 3 reports on experiments similar to those in Figure 1: the true and estimated numbers of distinct
species are shown as a function of the sample size n, separately for data generated from DP prior models
with α = 0 and different values of θ, and for PYP models with θ = 100 and different values of α. Note
that all estimates are computed under the (possibly mis-specified) assumption that α = 0, and estimating
θ empirically via maximum marginal likelihood, to avoid the computational issues related to the Monte
Carlo estimation experienced in Figure 1 (b). As predicted by the theory and anticipated by our previous
experiments, the results in Figure 3 confirm our estimates are accurate when the DP prior is well-specified,
while otherwise they tend to underestimate the number of distinct species, especially if n is large. Analogous
conclusions can be drawn from Figure 11, which reports on similar experiments based on synthetic data
generated from a Zipf distribution.
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Figure 3: True and estimated number of distinct species for synthetic data generated from a PYP
prior model with different parameters (α, θ). The estimated probabilities are computed under the
simplifying assumption that α = 0. Other details are as in Figure 1.

4.1 Experiments with real data

Finally, we apply the proposed methods to three real data sets. The first data set was made publicly available
by the National Center for Biotechnology Information (Hatcher et al., 2017) and contains 43,196 sequences
of approximately 30,000 nucleotides each, collected from SARS-CoV-2 viruses. For each nucleotide sequence,
we extract a list of all contiguous DNA sub-sequences of length 16 (i.e., 16-mers), and then we sketch the
resulting data set with a random hash function. The second data set consists of 18 open-domain classic
pieces of English literature from the Gutenberg Corpus (Project Gutenberg, 2022), downloaded using the
NLTK Python package (Bird et al., 2009). These data are pre-processed with the same approach of Sesia and
Favaro (2022): after removing punctuation and unusual words (keeping only words contained in a English
dictionary of size 25,487), we extract 1,700,000 consecutive pairs of words, or 2-grams. Then, the 2-grams
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are sketched with a random hash function, as usual. The third data set is discussed in Rojas et al. (2018)
and contains a list of 3,577,296 IP addresses, which we sketch directly without pre-processing; these data
were made publicly available through the Kaggle machine-learning competition website.

Figure 4 compares the true and estimated missing-mass probabilities for random subsets of the three
aforementioned data sets, as a function of the sample size and for two different values of the hash function
width. Our BNP estimated probabilities are calculated assuming α = 0, and estimating θ empirically
via maximum marginal likelihood. As in the previous section, all results are averaged over 20 independent
experiments with different hash functions. The results show our estimated probabilities are relatively accurate
for the DNA data set, which does not exhibit power-law tail behaviour (Sesia and Favaro, 2022), but tend
to underestimate the true missing mass in the other cases, especially if the hash function width is small.
Figure 5 reports analogous results corresponding to the estimation of the number of distinct species.
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Figure 4: True and estimated missing mass for three data sets sketched by a hash function of width
128 or 4096. Other details are as in Figure 1.
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Figure 5: Numbers of distinct species for sketched data. Other details are as in Figure 4.
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5 Discussion

This paper studied the classical problem of estimating coverage probabilities from a novel perspective,
addressing the increasingly relevant situations in which one only has access to a compressed and imperfect
summary, or sketch, of the true data. Despite the clear practical nature of this problem in the age of big
data, cloud computing and privacy concerns, we are not aware of other existing statistical or algorithmic
approaches for estimating coverage probabilities in relation to randomized data compression, or sketching.
This paper began to fill this gap by developing a BNP methodology to estimate coverage probabilities from
data sketched through random hashing, assuming a PYP prior.

The PYP has been widely used in BNP inference for species sampling problems (assuming the true data
to be available), mostly because of its uniqueness in combining mathematical tractability with a flexible
tail behaviour driven by an easily interpretable parameterization (Balocchi et al., 2022). In particular, the
mathematical tractability of the PYP prior has proved before to be a desirable feature in order to achieve
posterior inferences that are tractable to evaluate, computationally efficient and scalable to massive data sets.
However, our paper has shown that the BNP estimation of coverage probabilities from sketched data poses
additional challenges regarding the choice of the prior distribution. In particular, the lack of mathematical
tractability in the finite-dimensional projection of the PYP prior leads to numerically impractical estimators
in the context of sketched data, except for the special case of the DP prior. Therefore, our work paves the
way to investigate more computationally efficient approximations of BNP estimators under the general PYP
prior, starting from numerical approximations of the estimator in (16) or alternative representations of the
Monte Carlo results in Proposition 3. Theorem 2 also motivates further study of the large n asymptotic
behaviour of the estimator in (16), with the aim of obtaining simpler large n approximations with reliable
error bounds.

As this is the first work on the estimation of coverage probabilities from sketched data, it opens several
new avenues for future research. First of all, our work focused on providing BNP estimators, leaving open the
question of how to quantify the uncertainty of such estimators. This is a challenging problem, as assessing
the uncertainty would require computing the posterior distribution of the coverage probabilities given the
sketched data, or equivalently the posterior distribution of the model given the sketched data. Beyond
coverage probabilities, one may consider more general species sampling problems, with the most relevant
being the estimation of the number of unseen symbols (Good and Toulmin, 1956; Efron and Thisted, 1976;
Orlitsky et al., 2016). In particular, based on a sketch of n data points modeled as a random sample from
an unknown distribution p, which is endowed with a suitable prior, how to estimate the number of hitherto
unseen symbols that would be observed if m additional samples were collected from the same distribution?
This is an m-steps ahead generalization of the estimation of the missing mass considered in this paper.
Finally, this paper may inspire future studies of such problems from a frequentist perspective, which is a
well-developed area in the context of full data availability, but has yet not been investigated in relation with
sketching.

Appendix A Generalized factorial coefficients

We recall the definitions of Stirling number of the first type and generalized factorial coefficient, as well as
some of their key properties needed to prove our results (Charalambides, 2005, Chapter 2). For t > 0, the
(u, v)-th signless Stirling number of the first type, denoted by |s(u, v)|, is the defined as the v-th coefficient
in the expansion of (t)(u) into powers, i.e.,

(t)(u) =

u∑
v=0

|s(u, v)|tv, (24)

with the proviso that |s(0, 0)| = 1, |s(u, 0)| = 0 for u > 0 and |s(u, v)| = 0 for v > u. Generalized factorial
coefficients provide a generalization of signless Stirling number of the first type. In particular, the (u, v)-
th (centered) generalized factorial coefficient, namely C (u, v; a), is defined as the v-th coefficient in the
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expansion of (at)(u) into rising factorials, i.e.,

(at)(u) =

u∑
v=0

C (u, v; a)(t)(v), (25)

with C (0, 0; a) = 1, C (u, 0; a) = 0 for u > 0, C (u, v; a) = 0 for v > u. An explicit expression for the
generalized factorial coefficient is in Charalambides (2005, Theorem 2.14), i.e.,

C (u, v;α) =
1

v!

v∑
i=0

(−1)i
(
u

v

)
(−iα)(u),

from which

C (u+ 1, v;α) = (u− va)C (u, v;α) + αC (u, v + 1;α). (26)

See Charalambides (2005, Theorem 2.18). Stirling numbers of the first type arise from the generalized
factorial coefficients as α→ 0. From Charalambides (2005, Theorem 2.16)

lim
α→0

1

αk
C (u, v;α) = |s(u, v)|. (27)

We refer to Charalambides (2005, Chapter 2 and Chapter 3) for further details on Stirling numbers of the
first type, generalized factorial coefficients and some generalizations thereof.

Appendix B Tail behaviour of the PYP prior

The PYP prior features a power-law tail behaviour, in contrast with the geometric tail behaviour of the DP
prior, and such a behaviour emerges from the large-n asymptotics of Kn and Mr,n. For any α ∈ (0, 1) let
fα be the positive α-stable density function, and for θ > −α let Sα,θ be a positive random variable whose
distribution has a density function

fSα,θ (s) ∝ s
θ−1
α −1fα(s−1/α), (28)

which is a Mittag-Leffler density function. Pitman (2006, Theorem 3.8) shows that, as n→ +∞,

n−αKn → Sα,θ (29)

and

n−αMr,n →
α(1− α)(r−1)

r!
Sα,θ (30)

almost surely. Equation (29) shows that Kn, for large n, grows as nα; this is the growth of the number
of distinct symbols in n ≥ 1 samples from a power-law distribution of exponent c = α−1. By combining
(29) and (30), it holds that pα,r = α(1 − α)(r−1)/r! is the large-n asymptotic proportion of the number
of distinct symbols with frequency r. Then pα,r ≈ cαr

−α−1 for large r, with cα being a constant; this is
the distribution of the number of distinct symbols with frequency r in n ≥ 1 samples from a power-law
distribution of exponent c = α−1. The parameter α ∈ (0, 1) then controls the power-law tail behaviour of
P ∼ PYP(α, θ): the larger α the heavier the tail of P . See Figure 6. As a limiting case for α → 0, the DP
features geometric tails (Pitman, 2006, Chapter 3 and Chapter 4).

Appendix C Proofs

C.1 Proof of Theorem 1

The proof relies on the finite-dimensional projective property of the DP, in combination with the exchange-
ability of Xi’s and some combinatorial arguments on the sketch Cn. The independence between h and Xn
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Figure 6: Behaviours in the sample size n ≥ 1 of the statistic Kn and the statistic Mr,n/Kn, for 1 ≤ n ≤ 104

under P ∼ PYP(α, θ): α = 0 (blue -), α = .25 (red -.), α = .5 (yellow –) and α = .75 (purple :).

allows us to invoke the “freezing lemma” (Baldi, 2017, Lemma 4.1), according to which we can treat h as
fixed, i.e., non-random. Then, from (9),

p̃r,n =

J∑
j=1

Pr[h(Xn+1) = j |Cn = c]Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c], (31)

where c = (c1, . . . , cJ). First, we consider the evaluation of Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c], i.e.,

Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c] =
Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c]

Pr[h(Xn+1) = j,Cn = c]
. (32)

Consider the denominator of (32). Uniformity of h implies that h induces a partition {B1, . . . , BJ} of S
such that Bj = {s ∈ S : h(s) = j} and ν(Bj) = J−1 for j = 1, . . . , J . The finite-dimensional projective
property of the DP implies that (P (B1), . . . , P (BJ)) is distributed as a Dirichlet distribution with parameter
(θ/J, . . . , θ/J). Therefore, we write

Pr[h(Xn+1) = j,Cn = c] (33)

=

(
n

c1, . . . , cJ

)
E

(P (Bj))
cj+1

∏
1≤s6=j≤J

(P (Bs))
cs
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=

(
n

c1, . . . , cJ

)∫
∆J

pc11 · · · p
cj+1
j · · · pcJJ

Γ(θ)

Γ(θ/J) · · ·Γ(θ/J)
p
θ/J−1
1 · · · pθ/J−1

J dp1 · · · dpJ

=

(
n

c1, . . . , cJ

)
Γ(θ)Γ(θ/J + c1) · · ·Γ(θ/J + cj + 1) · · ·Γ(θ/J + cJ)

Γ(θ/J) · · ·Γ(θ/J)Γ(θ + n+ 1)
.

Now, consider the numerator of (32). To evaluate the numerator of (32), we define the event B(n, r) =
{X1 = · · · = Xr = Xm+1, {Xr+1, . . . , Xn} ∩ {Xn+1} = ∅}, such that we write

Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c]

=
1

J

(
m

r

)
Pr[B(m, r), h(Xn+1) = j,Cn = c]

=
1

J

(
m

r

)
Pr [B(m, r), h(Xn+1) = j, C1,n = c1, . . .

. . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

]
.

The distribution of the random variable (Xn+1, h(Xn+1),Cn) is determined by the distribution of the random
variable (X1, . . . , Xn, Xn+1). In particular, let Π(s, k) be the set of all partitions of 1, . . . , s into k disjoint
subsets π1, . . . , πk such that ni is the cardinality of πi. From Sangalli (2006, Equation 3.5), for any measurable
A1, . . . , An, An+1 we can write

Pr[X1 ∈ A1, . . . , Xn ∈ An, Xn+1 ∈ An+1]

=

n+1∑
k=1

θk

(θ)(n+1)

∑
(π1,...,πk)∈Πn+1,k

k∏
i=1

(ni − 1)!ν(∩n∈πiAn)

for any n ≥ 1. Now, let S be the Borel σ-algebra of S, and let νπ1,...,πk be a probability measure on
(Sn+1,Sn+1) defined as νπ1,...,πk =

∏
1≤i≤k ν(∩n∈πiAn) and attaching to B(n, r) a value that is either 0 or

1. In particular, νπ1,...,πk(B(n, r)) = 1 if and only if one of the πi’s is equal to the set {1, . . . , r, n+ 1}. Then,
based on νπ1,...,πk we can write that

Pr

[
B(n, r), h(Xn+1) = j, C1,n = c1, . . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

]

=

n−r+1∑
k=2

θk

(θ)(n+1)

∑
(π1,...,πk−1)∈Πn−r,k−1

r!

k∏
i=1

(ni − 1)!

× νπ1,...,πk

(
C1,n = c1, . . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

)

= θ
(θ)(n−r)

(θ)(n+1)
r!

n−r∑
l=1

θl

(θ)(n−r)

∑
(π1,...,πl)∈Πn−r,l

r!

l∏
i=1

(ni − 1)!

× νπ1,...,πk

(
C1,n = c1, . . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

)
,

where

n−r∑
l=1

θl

(θ)(n−r)

∑
(π1,...,πl)∈Πn−r,l

r!

l∏
i=1

(ni − 1)!

× νπ1,...,πk

(
C1,n = c1, . . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

)
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is the distribution of (X1, . . . , Xn−r) from a DP with scale θ, which is provided by Sangalli (2006, Equation
3.5) by relying on the finite-dimensional projective property of the DP, i.e.

θ
(θ)(n−r)

(θ)(n+1)
r!

n−r∑
l=1

θl

(θ)(n−r)

∑
(π1,...,πr)∈Πn−r,l

r!

l∏
i=1

(ni − 1)!

× νπ1,...,πk

(
C1,n = c1, . . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

)

= θ
(θ)(n−r)

(θ)(n+1)
r!

(
n− r

c1, . . . , cj − r, . . . , cJ

)
E

(P (Bj))
cj−r

∏
1≤s6=j≤J

(P (Bs))
cs


= θ

(θ)(n−r)

(θ)(n+1)
r!

(
n− r

c1, . . . , cj − r, . . . , cJ

)
×
∫

∆J

pc11 · · · p
cj−r
j · · · pcJJ

Γ(θ)

Γ(θ/J) · · ·Γ(θ/J)
p
θ/J−1
1 · · · pθ/J−1

J dp1 · · · dpJ

= θ
(θ)(n−r)

(θ)(n+1)
r!

(
n− r

c1, . . . , cj − r, . . . , cJ

)
× Γ(θ)Γ(θ/J + c1) · · ·Γ(θ/J + cj − r) · · ·Γ(θ/J + cJ)

Γ(θ/J) · · ·Γ(θ/J)Γ(θ +m− l)
,

where the first identity follows from Sangalli (2006, Proposition 3.1) under the DP prior; see also the formule
displayed at page 469 of Sangalli (2006). Therefore, we can write that

Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c] (34)

=
1

J

(
n

r

)
θ

(θ)(n−r)

(θ)(n+1)
r!

(
n− r

c1, . . . , cj − r, . . . , cJ

)
× Γ(θ)Γ(θ/J + c1) · · ·Γ(θ/J + cj − r) · · ·Γ(θ/J + cJ)

Γ(θ/J) · · ·Γ(θ/J)Γ(θ + n− r)
.

Now, according to (32), we combine (33) with (34) in order to obtain the conditional probability

Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c] =
θ/J

θ/J + cj

(cj − r + 1)(l)

(θ/J + cj − l)(r)
(35)

This result completes the evaluation of Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c]. Now, we consider the
evaluation of Pr[h(Xn+1) = j |Cn = c], which corresponds to the following ratio

Pr[h(Xn+1) = j |Cn = c] =
Pr[h(Xn+1) = j,Cn = c]

Pr[Cn = c]
. (36)

The numerator of (36) is given by (33), whereas the denominator of (36) follows directly from the finite-
dimensional projective property of the DP. In particular, we write

Pr[Cn = c] (37)

=

(
n

c1, . . . , cJ

)
E

[
J∏
s=1

(P (Bs))
cs

]

=

(
n

c1, . . . , cJ

)∫
∆J

pc11 · · · p
cJ
J

Γ(θ)

Γ(θ/J) · · ·Γ(θ/J)
p
θ/J−1
1 · · · pθ/J−1

J dp1 · · · dpJ

=

(
n

c1, . . . , cJ

)
Γ(θ)Γ(θ/J + c1) · · ·Γ(θ/J + cJ)

Γ(θ/J) · · ·Γ(θ/J)Γ(θ + n)
.
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Now, according to (36), we combine (33) with (37) to obtain the conditional probability

Pr[h(Xn+1) = j |Cn = c] =
θ/J + cj
θ + n

. (38)

According to (31) the proof of Equation (12) is completed by combining (38) with (35). With regards to
the proof of Equation (13), we define the partition set Mn,k = {(m1, . . . ,mn) : mi ≥ 0,

∑
1≤i≤nmi =

k and
∑

1≤i≤n imi = n}. Then, we can write that

p̃r,n =

n∑
k=1

∑
(m1,...,mn)∈Mn,k

Pr[Xn+1 ∈ Sr |Cn = c,Mn = (m1, . . . ,mn)]

× Pr[Mn = (m1, . . . ,mn) |Cn = c]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

p̂r,nPr[Mn = (m1, . . . ,mn) |Cn = c]

[by Equation (7) with α = 0]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

rmr

θ + n
Pr[Mn = (m1, . . . ,mn) |Cn = c]

=
r

θ + n
E[Mr,n |Cn = c],

i.e.,

p̃r,n =
r

θ + n
m̃r,n

and

m̃r,n =
θ + n

r
p̃r,n,

which completes the proof of Equation (13). Finally, with regards to Equation (14), we write

k̃n =
∑
r≥1

m̃r,n

=
∑
r≥1

θ + n

r
p̃r,n

=
∑
r≥1

θ + n

r

θ
J r!

(θ + n)

J∑
j=1

(
cj
r

)( θ
J

)
(cj−r)(
θ
J

)
(cj)

=
θ

J

J∑
j=1

1(
θ
J

)
(cj)

cj∑
r=1

(
cj
r

)
(r − 1)!

(
θ

J

)
(cj−r)

=
θ

J

J∑
j=1

Γ(cj + 1)

Γ(cj + θ/J)

cj∑
r=1

Γ(cj − r + θ/J)

rΓ(cj − r + 1)

=
θ

J

J∑
j=1

Γ(cj + 1)

Γ(cj + θ/J)

Γ(θ/J + cj)

Γ(1 + cj)
[ψ(1− θ/J − cj)− ψ(1− θ/J)]

= −θψ(1− θ/J) +
θ

J

J∑
j=1

ψ(1− θ/J − cj),

where ψ denotes the derivative of the log-Gamma function (digamma function), i.e., ψ(x) = d
dx log Γ(x).

This completes the proof of Equation (13), and the proof of the theorem
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C.2 Equation (11) from Equation (15)

The proof relies on the use Equation (27), which characterizes the behaviour of generalized factorial coeffi-
cients as α→ 0. In particular, by means of Equation (15) we write

lim
α→0

Pr[Cn = (c1, . . . , cJ)]

= lim
α→0

(
n

c1, . . . , cJ

) ∑
i∈I(c1,...,cJ )

( θα )
(|i|)

J|i|

(θ)(n)

J∏
j=1

C (cj , ij ;α)

= lim
α→0

(
n

c1, . . . , cJ

)
1

(θ)(n)

∑
i∈I(c1,...,cJ )

J−|i|

|i|−1∏
j=0

(θ + jα)

 J∏
j=1

C (cj , ij ;α)

iαj

[by Equation (27)]

=

(
n

c1, . . . , cJ

)
1

(θ)(n)

∑
i∈I(c1,...,cJ )

(
θ

J

)−|i| J∏
j=1

|s(cj , ij)|

[by Equation (24)]

=

(
n

c1, . . . , cJ

)
1

(θ)(n)

J∏
j=1

(
θ

J

)
(cj)

,

i.e., a Dirichlet-Multinomial distribution with parameter (n, θ/J, . . . , θ/J). The proof is completed.

C.3 Proof of Theorem 2

The proof is along lines similar to the proof of Theorem 1. Differently from the proof of Theorem 1, which
relies on the finite-dimensional projective property of the DP, this proof relies on marginal properties of
the PYP prior that are available from Sangalli (2006), in combination with the exchangeability of the Xi’s
(Pitman, 2006, Chapter 3) and some combinatorial arguments on the sketch Cn. As in the proof of Theorem
1, the independence between h and Xn allows us to treat h as fixed, i.e., non-random. Then, from (9),

p̃r,n =

J∑
j=1

Pr[h(Xn+1) = j |Cn = c]Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c], (39)

where c = (c1, . . . , cJ). First, we consider the evaluation of Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c], i.e.,

Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c] =
Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c]

Pr[h(Xn+1) = j,Cn = c]
. (40)

Consider the denominator of (40). Uniformity of h implies that h induces a J-partition {B1, . . . , BJ} of S
such that Bj = {v ∈ S : h(v) = j} and ν(Bj) = J−1 for any j = 1, . . . , J . Then, by a direct application of
Sangalli (2006, Equation 3.3), we can write that

Pr[h(Xn+1) = j,Cn = c] (41)

=

(
n

c1, . . . , cJ

)
E

(P (Bj))
cj+1

∏
1≤s 6=j≤J

(P (Bs))
cs


=

(
n

c1, . . . , cJ

) ∑
i∈Ic,j,+1

( θα )
(|i|)

J|i|

(θ)(n+1)
C (cj + 1, ij ;α)

∏
1≤s6=j≤J

C (cs; is;α)

Now, consider the numerator of (40). To evaluate the numerator of (40), we define the event B(n, r) =
{X1 = · · · = Xr = Xn+1, {Xr+1, . . . , Xn} ∩ {Xn+1} = ∅}, such that we write

Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c]
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=
1

J

(
n

r

)
Pr[B(n, r), h(Xn+1) = j,Cn = c]

=
1

J

(
n

r

)
Pr

[
B(n, r), h(Xn+1) = j, C1,n = c1, . . .

. . . ,

n∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

]
.

The distribution of the random variable (Xn+1, h(Xn+1),Cn) is determined by the distribution of the random
variable (X1, . . . , Xn, Xn+1). In particular, let Π(s, k) be the set of all partitions of 1, . . . , s into k disjoint
subsets π1, . . . , πk such that ni is the cardinality of πi. From Sangalli (2006, Equation 3.5), for any measurable
A1, . . . , An, An+1 we can write

Pr[X1 ∈ A1, . . . , Xn ∈ An, Xn+1 ∈ An+1]

=

n+1∑
k=1

∏k−1
i=0 (θ + iα)

(θ)(n+1)

∑
(π1,...,πk)∈Πn+1,k

k∏
i=1

(1− α)(ni−1)ν(∩n∈πiAn)

for any n ≥ 1. Now, let S be the Borel σ-algebra of S, and let νπ1,...,πk be a probability measure on
(Sn+1,S n+1) defined as νπ1,...,πk =

∏
1≤i≤k ν(∩n∈πiAn) and attaching to B(n, r) a value that is either 0 or

1. In particular, νπ1,...,πk(B(n, r)) = 1 if and only if one of the πi’s is equal to the set {1, . . . , r, n+ 1}. Then,
based on the measure νπ1,...,πk we write

Pr

[
B(n, r), h(Xn+1) = j, C1,n = c1, . . . ,

m∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

]

=

n−r+1∑
k=2

∏k−1
i=0 (θ + iα)

(θ)(n+1)

∑
(π1,...,πk−1)∈Π(n−r,k−1)

(1− α)(r)

k−1∏
i=1

(1− α)(ni−1)

× νπ1,...,πk

(
C1,n = c1, . . . ,

m∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − l, . . . , CJ,n = cJ

)

= θ
(θ + α)(n−r)

(θ)(n+1)
(1− α)(l)

n−r∑
t=1

∏t−1
i=0(θ + α+ iα)

(θ + α)(n−r)

∑
(π1,...,πt)∈Π(n−r,t)

t∏
i=1

(1− α)(ni−1)

× νπ1,...,πk

(
C1,n = c1, . . . ,

m∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − l, . . . , CJ,n = cJ

)
,

where

n−r∑
t=1

∏t−1
i=0(θ + α+ iα)

(θ + α)(n−r)

∑
(π1,...,πt)∈Π(n−r,t)

t∏
i=1

(1− α)(ni−1)

× νπ1,...,πk

(
C1,n = c1, . . . ,

m∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − l, . . . , CJ,n = cJ

)

is the distribution of a random sample (X1, . . . , Xn−r) from a PYP with discount parameter α and scale
parameter θ+α, which is provided by Sangalli (2006, Equation 3.5); note that the scale parameter is updated.
Then, we evaluate the above probability as follow

θ
(θ + α)(n−r)

(θ)(n+1)
(1− α)(l)

n−r∑
t=1

∏t−1
i=0(θ + α+ iα)

(θ + α)(n−r)

∑
(π1,...,πt)∈Π(n−r,t)

t∏
i=1

(1− α)(ni−1)

× νπ1,...,πk

(
C1,n = c1, . . . ,

m∑
i=r+1

1{h(Xi)}(h(Xn+1)) = cj − r, . . . , CJ,n = cJ

)
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= θ
(θ + α)(n−r)

(θ)(n+1)
(1− α)(r)

(
n− r

c1, . . . , cj − l, . . . , cJ

)
E

(P (Bj))
cj−r

∏
1≤s6=j≤J

(P (Bs))
cs


= θ

(θ + α)(n−r)

(θ)(n+1)
(1− α)(l)

(
n− r

c1, . . . , cj − r, . . . , cJ

)

×
∑

i∈Ic,j,−r

( θ+αα )
(|i|)

J|i|

(θ + α)(n−r)
C (cj − r, ij ;α)

∏
1≤s6=j≤J

C (cs, is;α),

where the first identity and the second identity follow from Sangalli (2006, Proposition 3.1) and Sangalli
(2006, Equation 3.3), respectively, under the PYP prior; see also formule displayed at page 469 of Sangalli
(2006). Hence, we can write the above probability as

Pr[Xn+1 ∈ Sr, h(Xn+1) = j,Cn = c] (42)

=
1

J

(
n

r

)
θ

(θ + α)(n−r)

(θ)(n+1)
(1− α)(r)

(
n− r

c1, . . . , cj − r, . . . , cJ

)

×
∑

i∈Ic,j,−r

( θ+αα )
(|i|)

J|i|

(θ + α)(n−r)
C (cj − r, ij ;α)

∏
1≤s 6=j≤J

C (cs, is;α).

Now, according to (40), we combine (41) with (42) to obtain the conditional probability

Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c] (43)

=
θ

J

(
cj
r

)
(θ + α)(n−r)

(θ)(n+1)
(1− α)(r)

×

∑
i∈Ic,j,−r

( θ+αα )
(|i|)

J|i|
(θ+α)(n−r)

C (cj − r, ij ;α)
∏

1≤s6=j≤J C (cs, is;α)

∑
i∈Ic,j,+1

( θα )
(|i|)

J|i|
(θ)(n+1)

C (cj + 1, ij ;α)
∏

1≤s6=j≤J C (cs, is;α)

=
θ

J

(
cj
l

)
(1− α)(r)

×
∑

i∈Ic,j,−r
( θ+αα )

(|i|)
J|i|

C (cj − r, ij ;α)
∏

1≤s6=j≤J C (cs, is;α)∑
i∈Ic,j,+1

( θα )
(|i|)

J|i|
C (cj + 1, ij ;α)

∏
1≤s6=j≤J C (cs, is;α)

.

This completes the evaluation of Pr[Xn+1 ∈ Sr |h(Xn+1) = j,Cn = c], and now we consider the evaluation
of the conditional probability Pr[h(Xn+1) = j |Cn = c]. That is, we compute

Pr[h(Xn+1) = j |Cn = c] =
Pr[h(Xn+1) = j,Cn = c]

Pr[Cn = c]
. (44)

The numerator of (44) is given by Equation (41), whereas the denominator of (44) follows

Pr[Cn = c] =

(
n

c1, . . . , cJ

)
E

[
J∏
s=1

(P (Bs))
cs

]
(45)

=

(
n

c1, . . . , cJ

) ∑
i∈Ic,j,0

( θα )
(|i|)

J|i|

(θ)(n)

J∏
s=1

C (cs, is;α).

Now, according to (44), we combine (41) with (45) to obtain the conditional probability

Pr[h(Xn+1) = j |Cn = c] (46)
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=

∑
i∈Ic,j,+1

( θα )
(|i|)

J|i|
(θ)(n+1)

C (cj + 1, ij ;α)
∏

1≤s6=j≤J C (cs, is;α)

∑
i∈Ic,j,0

( θα )
(|i|)

J|i|
(θ)(n)

∏J
s=1 C (cs, is;α)

=
1

θ + n

∑
i∈Ic,j,+1

( θα )
(|i|)

J|i|
C (cj + 1, ij ;α)

∏
1≤s 6=j≤J J

−isC (cs, is;α)∑
i∈Ic,j,0

( θα )
(|i|)

J|i|

∏J
s=1 C (cs, is;α)

.

According to (39), the proof of Equation (16) is completed by combining (46) with (43). With regards
to the proof of Equation (17), we define the partition set Mn,k = {(m1, . . . ,mn) : mi ≥ 0,

∑
1≤i≤nmi =

k and
∑

1≤i≤n imi = n}. Then, we can write that

p̃r,n =

n∑
k=1

∑
(m1,...,mn)∈Mn,k

Pr[Xn+1 ∈ Sr |Cn = c,Mn = (m1, . . . ,mn)]

× Pr[Mn = (m1, . . . ,mn) |Cn = c]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

p̂r,nPr[Mn = (m1, . . . ,mn) |Cn = c]

[by Equation (7)]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

(r − α)mr

θ + n
Pr[Mn = (m1, . . . ,mn) |Cn = c]

=
r − α
θ + n

E[Mr,n |Cn = c],

i.e.,

p̃r,n =
r − α
θ + n

m̃r,n

and

m̃r,n =
θ + n

r − α
p̃r,n,

which completes the proof of Equation (17). Finally, with regards to Equation (18), we write

p̃0,n =

n∑
k=1

∑
(m1,...,mn)∈Mn,k

Pr[Xn+1 ∈ S0 |Cn = c,Mn = (m1, . . . ,mn)]

× Pr[Mn = (m1, . . . ,mn) |Cn = c]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

p̂0,nPr[Mn = (m1, . . . ,mn) |Cn = c]

[by Equation (7)]

=

n∑
k=1

∑
(m1,...,mn)∈Mn,k

θ + kα

θ + n
Pr[Mn = (m1, . . . ,mn) |Cn = c]

=
θ

θ + n
+

α

θ + n
E[Kn |Cn = c],

i.e.,

p̃0,n =
θ

θ + n
+

α

θ + n
k̃n

and

k̃n =
θ + n

α
p̃0,n −

θ

α
.

This completes the proof of Equation (17), and the proof of the theorem.
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C.4 Equation (12) from Equation (16)

The proof relies on the use Equation (27), which characterizes the behaviour of generalized factorial coeffi-
cients as α→ 0. In particular, by means of Theorem 2 we can write that

lim
α→0

p̃r,n

= lim
α→0

(θ/J)(1− α)(r)

(θ + n)

J∑
j=1

(
cj
r

)∑
i∈I(c1,...,cJ ),j,−r

( θ+αα )|i|
J|i|

∏J
s=1 C (cs − rδs,j , is;α)∑

i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1 C (cs, is;α)

= lim
α→0

(θ/J)(1− α)(r)

θ + n

×
J∑
j=1

(
cj
r

)∑
i∈I(c1,...,cJ ),j,−r

J−|i|
(∏|i|−1

j=0 (θ + α+ jα)
)∏J

s=1
C (cs−rδs,j ,is;α)

iαs∑
i∈I(c1,...,cJ )

J−|i|
(∏|i|−1

j=0 (θ + jα)
)∏J

s=1
C (cs,is;α)

iαs

[by Equation (27)]

=
(θ/J)r!

θ + n

J∑
j=1

(
cj
r

)∑
i∈I(c1,...,cJ ),j,−r

(
θ
J

)|i|∏J
s=1 |s(cs − rδs,j , is)|∑

i∈Icm,j,0

(
θ
J

)|i|∏J
s=1 |s(cs, is)|

[by Equation (24)]

=
(θ/J)r!

θ + n

J∑
j=1

(
cj
r

)∏J
s=1

(
θ
J

)
(cs−rδs,j)∏J

s=1

(
θ
J

)
(cs)

=
(θ/J)r!

θ + n

J∑
j=1

(
cj
r

)
Γ(θ/J + cj − r)

Γ(θ/J + cj)
.

Equation (12) follows from the definition of rising factorial numbers in terms of the ratio of Gamma functions,
i.e., (a)(n) = Γ(a+ n)/Γ(a) for a > 0 and n ∈ N0. The proof is completed.

C.5 Proof of Equation (20)

The proof relies on the use of a Poisson asymptotic property for (normalized) generalized factorial coefficients.
In particular, according to Dolera and Favaro (2020, Lemma 2), for z > 0

lim
n→+∞

zkC (n, k;α)∑n
k=0 z

kC (n, k;α)
= e−z

zk−1

(k − 1)!
. (47)

First, we rewrite the numerator and the denominator of (19). We write the numerator of (19) as

n1−α θ

θ + n

∑
i∈I(c1,...,cJ )

(
θ+α
α

)
(|i|)

J |i|

J∏
s=1

C (cs, is;α) (48)

= n1−α θ

θ + n

(
J∏
s=2

cs∑
is=0

1

J is
C (cs, is;α)

)

×
c1∑
i1=0

(
θ + α

α

)
(i1)

(
1

J

)i1
C (c1, i1;α) · · ·

· · · ×
cj∑
ij=0

(
θ + α

α
+ i1 + · · ·+ ij−1

)
(ij)

(
1

J

)ij
C (cj , ij ;α) · · ·

· · · ×
cJ∑
iJ=0

(
θ + α

α
+ i1 + · · ·+ iJ−1

)
(iJ )

(
1
J

)iJ C (cJ , iJ ;α)∑cJ
iJ=0

(
1
J

)iJ C (cJ , iJ ;α)
.
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Then, we apply the same arguments to rewrite the denominator of (16). In particular, we have

∑
i∈I(c1,...,cJ )

(
θ
α

)
(i)

J |i|

J∏
s=1

C (cs, is;α) (49)

=

(
J∏
s=2

cs∑
is=0

1

J is
C (cs, is;α)

)

×
c1∑
i1=0

(
θ

α

)
(i1)

(
1

J

)i1
C (c1, i1;α) · · ·

· · · ×
cj∑
ij=0

(
θ

α
+ i1 + · · ·+ ij−1

)
(ij)

(
1

J

)ij
C (cj , ij ;α) · · ·

· · · ×
cJ∑
iJ=0

(
θ

α
+ i1 + · · ·+ iJ−1

)
(iJ )

(
1
J

)iJ C (cJ , iJ ;α)∑cJ
iJ=0

(
1
J

)iJ C (cJ , iJ ;α)
.

Now, under the assumption that cj = nJ−1 for any j ∈ [J ], we consider (48) and apply (47) to obtain an
approximation of it. For any h ∈ {2, . . . , J}, by a direct application of (47) we write

lim
n→+∞

nJ−1∑
ih=0

(
θ + α

α
+ i1 + · · ·+ ih−1

)
(ih)

(
1
J

)ih C (nJ−1, ih;α)∑nJ−1

ih=0

(
1
J

)ih C (nJ−1, ih;α)
(50)

=
∑
ih≥1

(
θ + α

α
+ i1 + · · ·+ ih−1

)
(ih)

e−
1
J

(
1
J

)ih−1

(ih − 1)!
.

Similarly, under the assumption that cj = nJ−1 for any j ∈ [J ], we consider (49) and apply (47) to obtain
an approximation of it. For any h ∈ {2, . . . , J}, by an application of (47) we write

lim
n→+∞

nJ−1∑
ih=0

(
θ

α
+ i1 + · · ·+ ih−1

)
(ih)

(
1
J

)ih C (nJ−1, ih;α)∑nJ−1

ih=0

(
1
J

)ih C (nJ−1, ih;α)
(51)

=
∑
ih≥1

(
θ

α
+ i1 + · · ·+ ih−1

)
(ih)

e−
1
J

(
1
J

)ih−1

(ih − 1)!
.

Now, for h ∈ {2, . . . , J}, we make use of (50) and (51) in (48) and (49), respectively, to find

lim
n→+∞

∑
i∈I(nJ−1,...,nJ−1)

(
θ+α
α

)
(|i|)

J |i|

J∏
s=1

C (nJ−1, is;α) (52)

and

lim
n→+∞

∑
i∈I(nJ−1,...,nJ−1)

(
θ

α

)
(|i|)

J∏
s=1

C (nJ−1, is;α)

J is
. (53)

In order to apply (50) and (51) to get (52) and (53), respectively, we proceed iteratively from h = J to h = 2
on the numerator (48) and on the denominator (49), i.e.

i) for h = J ,

lim
n→+∞

nJ−1∑
iJ=0

(
θ + α

α
+ i1 + · · ·+ iJ−1

)
(iJ )

(
1
J

)iJ C (nJ−1, iJ ;α)∑nJ−1

iJ=0

(
1
J

)iJ C (nJ−1, iJ ;α)
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=
∑
iJ≥1

(
θ + α

α
+ i1 + · · ·+ iJ−1

)
(iJ )

e−
1
J

(
1
J

)iJ−1

(iJ − 1)!
= e−

1
J

θ+α
α + i1 + · · ·+ iJ−1(

1− 1
J

) θ+α
α +i1+···+iJ−1+1

and

lim
n→+∞

nJ−1∑
iJ=0

(
θ

α
+ i1 + · · ·+ iJ−1

)
(iJ )

(
1
J

)iJ C (nJ−1, iJ ;α)∑nJ−1

iJ=0

(
1
J

)iJ C (nJ−1, iJ ;α)

=
∑
iJ≥1

(
θ

α
+ i1 + · · ·+ iJ−1

)
(iJ )

e−
1
J

(
1
J

)iJ−1

(iJ − 1)!
= e−

1
J

θ
α + i1 + · · ·+ iJ−1(

1− 1
J

) θ
α+i1+···+iJ−1+1

;

ii) for h = J − 1,

lim
n→+∞

nJ−1∑
iJ−1=0

(
θ+α
α + i1 + · · ·+ iJ−2

)
(iJ−1)

e
1
J

(1− 1
J )

θ+α
α

+i1+···+iJ−1+1

θ+α
α +i1+···+iJ−1

(
1
J

)iJ−1 C (nJ−1, iJ−1;α)∑nJ−1

iJ−1=0

(
1
J

)iJ−1 C (nJ−1, iJ−1;α)

=
∑

iJ−1≥1

(
θ + α

α
+ i1 + · · ·+ iJ−2

)
(iJ−1)

e−
1
J

(
1
J

)iJ−1−1

(iJ−1 − 1)!
e−

1
J

θ+α
α + i1 + · · ·+ iJ−1(

1− 1
J

) θ+α
α +i1+···+iJ−1+1

= e−
2
J

1(
1− 1

J

) θ+α
α +i1+···+iJ−2+2

∑
iJ−1≥1

(
θ + α

α
+ i1 + · · ·+ iJ−2

)
(iJ−1+1)

(
1

J−1

)iJ−1−1

(iJ−1 − 1)!

= e−
2
J

1(
1− 1

J

) θ+α
α +i1+···+iJ−2+2

(
θ+α
α + i1 + · · ·+ iJ−2

)
(2)(

1− 1
J−1

) θ+α
α +i1+···+iJ−2+2

= e−
2
J

(
θ+α
α + i1 + · · ·+ iJ−2

)
(2)(

1− 2
J

) θ+α
α +i1+···+iJ−2+2

and

lim
n→+∞

nJ−1∑
iJ−1=0

(
θ
α + i1 + · · ·+ iJ−2

)
(iJ−1)

e
1
J

(1− 1
J )

θ
α

+i1+···+iJ−1+1

θ
α+i1+···+iJ−1

(
1
J

)iJ−1 C (nJ−1, iJ−1;α)∑nJ−1

iJ−1=0

(
1
J

)iJ−1 C (nJ−1, iJ−1;α)

=
∑

iJ−1≥1

(
θ

α
+ i1 + · · ·+ iJ−2

)
(iJ−1)

e−
1
J

(
1
J

)iJ−1−1

(iJ−1 − 1)!
e−

1
J

θ
α + i1 + · · ·+ iJ−1(

1− 1
J

) θ
α+i1+···+iJ−1+1

= e−
2
J

1(
1− 1

J

) θ
α+i1+···+iJ−2+2

∑
iJ−1≥1

(
θ

α
+ i1 + · · ·+ iJ−2

)
(iJ−1+1)

(
1

J−1

)iJ−1−1

(iJ−1 − 1)!

= e−
2
J

1(
1− 1

J

) θ
α+i1+···+iJ−2+2

(
θ
α + i1 + · · ·+ iJ−2

)
(2)(

1− 1
J−1

) θ
α+i1+···+iJ−2+2

= e−
2
J

(
θ
α + i1 + · · ·+ iJ−2

)
(2)(

1− 2
J

) θ
α+i1+···+iJ−2+2

;

iii) for h = j,

lim
n→+∞

nJ−1∑
ij=0

(
θ+α
α + i1 + · · ·+ ij−1

)
(ij)

e
J−j
J

(1− J−jJ )
θ+α
α

+i1+···+ij+J−j

( θ+αα +i1+···+ij)
(J−j)

(
1
J

)ij C (nJ−1, ij ;α)∑nJ−1

ij=0

(
1
J

)ij C (nJ−1, ij ;α)
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=
∑
ij≥1

(
θ + α

α
+ i1 + · · ·+ ij−1

)
(ij)

e−
1
J

(
1
J

)ij−1

(ij − 1)!
e−

J−j
J

(
θ+α
α + i1 + · · ·+ ij

)
(J−j)(

1− J−j
J

) θ+α
α +i1+···+ij+J−j

= e−
J−j+1
J

1(
1− J−j

J

) θ+α
α +i1+···+ij−1+J−j+1

∑
ij≥1

(
θ + α

α
+ i1 + · · ·+ ij−1

)
(ij+J−j)

·

·

(
1
j

)ij−1

(ij − 1)!

= e−
J−j+1
J

1(
1− J−j

J

) θ+α
α +i1+···+ij−1+J−j+1

(
θ+α
α + i1 + · · ·+ ij−1

)
(J−j+1)(

1− 1
j

) θ+α
α +i1+···+ij−1+J−j+1

= e−
J−j+1
J

(
θ+α
α + i1 + · · ·+ ij−1

)
(J−j+1)(

1− J−j+1
J

) θ+α
α +i1+···+ij−1+J−j+1

and

lim
n→+∞

nJ−1∑
ij=0

(
θ
α + i1 + · · ·+ ij−1

)
(ij)

e
J−j
J

(1− J−jJ )
θ
α

+i1+···+ij+J−j

( θα+i1+···+ij)
(J−j)

(
1
J

)ij C (nJ−1, ij ;α)∑nJ−1

ij=0

(
1
J

)ij C (nJ−1, ij ;α)

=
∑
ij≥1

(
θ

α
+ i1 + · · ·+ ij−1

)
(ij)

e−
1
J

(
1
J

)ij−1

(ij − 1)!
e−

J−j
J

(
θ
α + i1 + · · ·+ ij

)
(J−j)(

1− J−j
J

) θ
α+i1+···+ij+J−j

= e−
J−j+1
J

1(
1− J−j

J

) θ
α+i1+···+ij−1+J−j+1

∑
ij≥1

(
θ

α
+ i1 + · · ·+ ij−1

)
(ij+J−j)

(
1
j

)ij−1

(ij − 1)!

= e−
J−j+1
J

1(
1− J−j

J

) θ
α+i1+···+ij−1+J−j+1

(
θ
α + i1 + · · ·+ ij−1

)
(J−j+1)(

1− 1
j

) θ
α+i1+···+ij−1+J−j+1

= e−
J−j+1
J

(
θ
α + i1 + · · ·+ ij−1

)
(J−j+1)(

1− J−j+1
J

) θ
α+i1+···+ij−1+J−j+1

;

iv) for h = 2,

lim
n→+∞

nJ−1∑
i2=0

(
θ+α
α + i1

)
(i2)

e
J−2
J

(1− J−2
J )

θ+α
α

+i1+i2+J−2

( θ+αα +i1+i2)
(J−2)

(
1
J

)i2 C (nJ−1, i2;α)∑nJ−1

i2=0

(
1
J

)i2 C (nJ−1, i2;α)

=
∑
i2≥1

(
θ + α

α
+ i1

)
(i2)

e−
1
J

(
1
J

)i2−1

(i2 − 1)!
e−

J−2
J

(
θ+α
α + i1 + i2

)
(J−2)(

1− J−2
J

) θ+α
α +i1+i2+J−2

= e−
J−1
J

1(
1− J−2

J

) θ+α
α +i1+J−1

∑
i2≥1

(
θ + α

α
+ i1

)
(i2+J−2)

(
1
2

)i2−1

(i2 − 1)!

= e−
J−1
J

(
θ+α
α + i1

)
(J−1)(

1− J−1
J

) θ+α
α +i1+J−1
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and

lim
n→+∞

nJ−1∑
i2=0

(
θ
α + i1

)
(i2)

e
J−2
J

(1− J−2
J )

θ
α

+i1+i2+J−2

( θα+i1+i2)
(J−2)

(
1
J

)i2 C (nJ−1, i2;α)∑nJ−1

i2=0

(
1
J

)i2 C (nJ−1, i2;α)

=
∑
i2≥1

(
θ

α
+ i1

)
(i2)

e−
1
J

(
1
J

)i2−1

(i2 − 1)!
e−

J−2
J

(
θ
α + i1 + i2

)
(J−2)(

1− J−2
J

) θ
α+i1+i2+J−2

= e−
J−1
J

1(
1− J−2

J

) θ
α+i1+J−1

∑
i2≥1

(
θ

α
+ i1

)
(i2+J−2)

(
1
2

)i2−1

(i2 − 1)!

= e−
J−1
J

(
θ
α + i1

)
(J−1)(

1− J−1
J

) θ
α+i1+J−1

.

Then, we complete by considering the last term involving nJ−1. In particular, we can write

lim
n→+∞

n1−α θ

θ + n

∑nJ−1

i1=0

( θ+αα )
(i1)

e
J−1
J

(1− J−1
J )

θ+α
α

+i1+J−1

( θ+αα +i1)
(J−1)

(
1
J

)i1 C (nJ−1, i1;α)

∑nJ−1

i1=0

( θα )
(i1)

e
J−1
J

(1− J−1
J )

θ
α

+i1+J−1

( θα+i1)
(J−1)

(
1
J

)i1 C (nJ−1, i1;α)

= lim
n→+∞

n1−α θ

θ + n

e−
J−1
J

( 1
J )

θ+α
α

+J

(
θ+α
α

)
(J−1)

∑nJ−1

i1=1

(
θ+α
α + J − 1

)
(ii)

C (nJ−1, i1;α)

e−
J−1
J

( 1
J )

θ
α

+J

(
θ
α

)
(J−1)

∑nJ−1

i1=1

(
θ
α + J − 1

)
(ii)

C (nJ−1, i1;α)

= lim
n→+∞

n1−α θ

θ + n

e−
J−1
J

( 1
J )

θ+α
α

+J

(
θ+α
α

)
(J−1)

(θ + Jα)(nJ−1)

e−
J−1
J

( 1
J )

θ
α

+J

(
θ
α

)
(J−1)

(θ + Jα− α)(nJ−1)

= lim
n→+∞

n1−α θ

θ + n
J

(θ + Jα− α) (θ + Jα)(nJ−1)

θ (θ + Jα− α)(nJ−1)

= J1−αΓ(θ + Jα− α+ 1)

Γ(θ + Jα)
,

where the last equality follows by means of Stirling approximation for the ration of Gamma functions, i.e.,
Γ(a+ n)/Γ(n) ≈ an as n→ +∞. This complete the proof of Equation (20).

C.6 Proof of Proposition 3

The proof relies on the use of the distribution in (5) of the number of distinct blocks in the random partition
induced by a random sample from P ∼ PYP(α, θ). From Theorem 2, we write

p̃r,n =
(θ/J)(1− α)(r)

(θ + n)

J∑
j=1

(
cj
r

)∑
i∈I(c1,...,cJ ),j,−r

( θ+αα )|i|
J|i|

∏J
s=1 C (cs − rδs,j , is;α)∑

i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1 C (cs, is;α)

=
(θ/J)θ(1− α)(r)

(θ + n)
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×
J∑
j=1

(
cj
r

)
(θ)(cj−r)

(θ)(cj)

∑
i∈I(c1,...,cJ ),j,−r

( θ+αα )|i|
J|i|

∏J
s=1( θα )

(is)

∏J
s=1

( θα )
(is)

(θ)(cs−rδs,j)
C (cs − rδs,j , is;α)

∑
i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1( θα )

(is)

∏J
s=1

( θα )
(is)

(θ)(cs)
C (cs, is;α)

[by Equation (5)]

=
(θ/J)(1− α)(r)

(θ + n)

J∑
j=1

(
cj
r

)
(θ)(cj−r)

(θ)(cj)

∑
i∈I(c1,...,cJ ),j,−r

( θ+αα )|i|
J|i|

∏J
s=1( θα )

(is)

∏J
s=1 Pr[Kcs−rδs,j = is]∑

i∈I(c1,...,cJ )

( θα )|i|
J|i|

∏J
s=1( θα )

(is)

∏J
s=1 Pr[Kcs = is]

=
(θ/J)(1− α)(r)

(θ + n)

J∑
j=1

(
cj
l

) (θ)(cj−r)E


( θ+αα )

(
∑J
s=1 Kcs−rδs,j )

J

∑J
s=1 Kcs−rδs,j∏J

s=1( θα )
(Kcs−rδs,j)


(θ)(cj)E

 ( θα )
(
∑J
s=1 Kcs )

J

∑J
s=1 Kcs∏J

s=1( θα )
(Kcs )


,

where Kcs is the number of distinct blocks in the random partition induced by a random sample Xcs from
P ∼ PYP(α, θ) for any s = 1, . . . , J , with the random variable Kcr independent of the random variable Kcs

for any s 6= r with r, s = 1, . . . , J . The proof is completed.

Appendix D Additional results from numerical experiments
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Figure 7: True and estimated coverage probabilities for data sampled from a PYP prior model with
different parameters (α, θ). Other details are as in Figure 1 (b).
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Figure 8: True and estimated missing mass for sketched data simulated from a PYP prior model
with different parameters (α, θ). The estimated is estimated assuming a mis-specified Dirichlet
process prior with parameter estimated via maximum marginal likelihood. Other details are as in
Figure 1.
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Figure 9: True and estimated missing mass for sketched data simulated from a PYP prior model
with parameter α = 0.5 and different θ. Other details are as in Figure 8.
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Figure 10: True and estimated missing mass for data sampled from a Zipf distribution, as a function
of the tail parameter α. The estimated missing mass is calculated either assuming a mis-specified
Dirichlet process prior with parameter estimated via maximum marginal likelihood, or assuming a
PYP prior model with α = 0.5 and θ estimated empirically via Monte Carlo. The latter approach
is only applied when n = 10. Other details are as in Figure 8.
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Figure 11: True and estimated number of distinct species for data sampled from a Zipf distribution,
as a function of the tail parameter α. The estimated missing mass is calculated assuming a mis-
specified Dirichlet process prior with parameter estimated via maximum marginal likelihood. Other
details are as in Figure 10.
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